自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(27)
  • 收藏
  • 关注

原创 6.5-7

将A[heapSize]和A[i]交换,heapSize减1A[heapSize]和A[i]交换,heapSize减1,则A[i]A[i]的左右子堆都是最大堆,故只需对A[i]A[i]进行MAX-HEAPIFY即可,复杂度为O(lgn)O(\lg n)

2015-07-14 22:07:17 237

原创 6.5-6

用最大优先级队列实现,记当前最大key值为max,先进先出队列为插入新元素的key为max-1,栈为插入新元素的key为max+1 当key的值溢出时,可以为所有元素重新定一遍key

2015-07-14 21:50:09 254

原创 6.5-3

insert的第一步是检查赋予的key值不能小于当前值,所以要让当前值无限小

2015-07-14 19:07:22 214

原创 6.3-3

题目写错了,应该是取上整我们来确定高度为h的结点,设为i,记k为以i为祖先,最左边的叶子则$i\cdot 2^h=k$,又$\because \frac n2<k\leq n$,故$\frac{n}{2^{h+1}}<i\leq \frac{n}{2^h}$即$\lfloor\frac{n}{2^{h+1}}\rfloor+1\leq i\leq \lfloor\frac{n}{2^h}\rfloor$,故$i

2015-07-12 23:36:32 247

原创 6.3-2

MAX-HEAPIFY的前提是i的左右二叉子树都是最大堆,所以必须倒序

2015-07-10 23:18:44 194

原创 6.2-6

当堆顶元素严格最小时,该元素被移动到叶子上,故开销正比于堆的深度 T=Ω(h)=Ω(⌊lgn⌋)=Ω(lgn)T=\Omega(h)=\Omega(\lfloor lgn\rfloor)=\Omega(lgn)

2015-07-10 16:36:10 187

原创 6.2-5

MAX-HEAPIFY(A, i) while i ≤ A.heap-size l = LEFT(i) r = RIGHT(i) if l ≤ A.heap-size and A[l] > A[i] largest = l else largest = i if r ≤ A.heap-size a

2015-07-10 16:28:50 304

原创 6.2-4

此时,i都是叶子结点,没有子结点,故不会产生任何效果

2015-07-09 13:36:51 194

原创 6.2-3

不会进行操作,直接返回结束

2015-07-09 13:35:17 202

原创 6.2-2

MIN-HEAPIFY(A, i) l = LEFT(i) r = RIGHT(i) if l ≤ A.heap-size and A[l] < A[i] smallest = l else smallest = i if r ≤ A.heap-size and A[r] < A[i] smallest = r if smallest ≠

2015-07-09 13:12:18 217

原创 6.2-1

3与10换,然后3与9换,结束

2015-07-09 13:08:26 217

原创 6.1-7

所谓叶子结点就是没有子结点的结点,故2i>n2i>n 故i≥⌊n2⌋+1i \geq \lfloor \frac n2\rfloor + 1

2015-07-08 23:03:04 227

原创 6.1-6

7挂在6的下面,所以不满足最大堆性质,不是最大堆

2015-07-08 22:58:11 197

原创 6.1-5

∵left(i)>i,right(i)>i\because left(i)>i,right(i)>i ∴A[left(i)]≥A[i],A[right(i)]≥A[i]\therefore A[left(i)]\geq A[i], A[right(i)]\geq A[i] 故是最小堆

2015-07-08 22:56:26 205

原创 6.1-4

最小元素在堆的叶子部分,即该元素没有child

2015-07-08 22:54:16 206

原创 6.1-3

若最大元素x在非根节点i上 ∵A[PARENT(i)]≥A[i]\because A[PARENT(i)]\geq A[i] ∴A[PARENT(i)]=A[i]\therefore A[PARENT(i)]=A[i] 故依次向上,能够推出A[root]=xA[root]=x,与根节点不是最大元素矛盾 故最大元素必然在根节点

2015-07-08 22:48:59 170

原创 6.1-2

当2h≤n≤2h+1−12^h\leq n \leq 2^{h+1}-1时,堆高度为h 对不等式取lg,得h≤⌊lgn⌋≤hh\leq\lfloor lgn\rfloor\leq h 故h=⌊lgn⌋h=\lfloor lgn\rfloor

2015-07-08 22:40:14 197

原创 6.1-1

高度为h的堆元素最多为2h−12^h-1 高度为h的堆元素最少为2h−12^{h-1}

2015-07-08 22:32:55 188

原创 5-2

a) 我们使用一个set,保存已经搜索过的元素,每一次搜索,如果命中则返回,否则将其添加进入set,当set的大小达到n则结束 b) 几何分布E[X]=1p=nE[X]=\frac1p=n c) 几何分布E[X]=1p=nkE[X]=\frac1p=\frac nk d) 即投球问题中,使得每个空盒有球的期望E=nlnnE=n\ln n e) 在每一位的可能均为1n\frac1n,E=∑ni

2015-07-07 23:35:13 201

原创 5-1

a) 第j步开始前,计数器为i,表示nin_i,若该步没有增加,则仍表示nin_i,若增加了,则表示ni+1n_{i+1},表示的数增加了ni+1−nin_{i+1}-n_i 故E[Xj]=0⋅(1−1ni+1−ni)+(ni+1−ni)⋅1ni+1−ni=1E[X_j]=0\cdot(1-\frac{1}{n_{i+1}-n_i})+(n_{i+1}-n_i)\cdot\frac{1}{n_{i

2015-07-06 00:05:30 183

原创 5.4-6

记第i个盒子没有球的事件为XiX_i E[Xi]=(1−1n)n≈1eE[X_i]=(1-\frac1n)^n\approx \frac1e E[X]=∑ni=1E[Xi]=neE[X]=\sum_{i=1}^nE[X_i]=\frac ne记第i个盒子恰有一个球的事件为YiY_i E[Yi]=n1n(1−1n)n−1≈1eE[Y_i]=n\frac1n(1-\frac1n)^{n-1}\ap

2015-07-05 22:02:33 183

原创 5.4-5

串中所有元素都不相同,即生日问题中所有人生日不同 P=n!(n−k)!nkP=\frac{n!}{(n-k)!n^k}

2015-07-05 21:54:27 172

原创 5.4-4

用指示器来做 E[X]=∑ni=1∑nj=i+1∑nk=j+11n2=k(k−1)(k−2)6n2E[X]=\sum_{i=1}^n\sum_{j=i+1}^n\sum_{k=j+1}^n\frac{1}{n^2}=\frac{k(k-1)(k-2)}{6n^2} 求得k=94

2015-07-05 21:51:22 165

原创 5.4-3

相互独立是必要的,否则整体的概率就不是每个人的概率相乘了

2015-07-05 20:35:21 248

原创 5.4-2

记Mi=b!(b−i)!bi记M_i=\frac{b!}{(b-i)!b^i} 设投入i+1个球时结束,则Pi=Mi−Mi+1P_i=M_i-M_{i+1} E=∑bi=1(i+1)Pi=∑bi=1(i+1)(Mi−Mi+1)E=\sum_{i=1}^{b}(i+1)P_i=\sum_{i=1}^{b}(i+1)(M_i-M_{i+1})   =M1+∑bi=1Mi−(b+1)Mb+1\ \

2015-07-05 19:50:43 267

原创 5.4-1

1) 设有k人,每个人与我不同生日的概率364365\frac{364}{365},k人的概率为p=(364365)k≤0.5p=(\frac{364}{365})^k\leq 0.5,求得k=263k=263 2) 设有k人,没有人生日为7月4日的概率为(364365)k(\frac{364}{365})^k,恰有一人生日为7月4日的概率为k(364365)k−1⋅1365k(\frac{364

2015-07-05 18:45:57 311

原创 4-7

a) 必要性显然成立 充分性: ∵∑k−i−1l=0(A[i+l,j]+A[i+l+1,j+1])≤∑k−i−1l=0(A[i+l,j+1]+A[i+l+1,j])\because\sum_{l=0}^{k-i-1}(A[i+l,j]+A[i+l+1,j+1])\leq\sum_{l=0}^{k-i-1}(A[i+l,j+1]+A[i+l+1,j]) ∴A[i,j]+A[k,j+1]≤A[i,

2015-07-05 16:22:31 197

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除