算法重拾之路——strassen矩阵乘法

Strassen矩阵乘法:算法详解与优化
本文详细介绍了Strassen矩阵乘法算法,这是一种利用分治策略将矩阵乘法时间复杂度降低到O(n^log7)的优化方法。通过将矩阵不断拆分为2×2子矩阵,然后进行7次乘法和多次加法运算,从而减少了乘法的数量。虽然仍存在递归方程,但总体效率显著提高。

***************************************转载请注明出处:http://blog.csdn.net/lttree********************************************



第一章:分治与递归


STRASSEN矩阵乘法


算法描述:

        矩阵乘法是线性代数中最常见的问题之一,它在数值计算中有广泛的应用。设A 和 B 是两个n × n矩阵,它们的乘积AB同样是一个n×n矩阵。A和B的乘积矩阵C 中的元素cij定义为:

                                                                   

按照这个定义来看,计算A 与 B 矩阵乘法,至少需要 n 次乘法 与 n-1 次加法,所以可以知道,求矩阵C乘法的时间为O(n^3)

        

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值