***************************************转载请注明出处:http://blog.csdn.net/lttree********************************************
 
 
 
 
第一章:分治与递归
 
 
STRASSEN矩阵乘法
 
 
算法描述:
矩阵乘法是线性代数中最常见的问题之一,它在数值计算中有广泛的应用。设A 和 B 是两个n × n矩阵,它们的乘积AB同样是一个n×n矩阵。A和B的乘积矩阵C 中的元素cij定义为:
                                                                    
按照这个定义来看,计算A 与 B 矩阵乘法,至少需要 n 次乘法 与 n-1 次加法,所以可以知道,求矩阵C乘法的时间为O(n^3)
Strassen矩阵乘法:算法详解与优化
        
                  
                  
                  
                  
本文详细介绍了Strassen矩阵乘法算法,这是一种利用分治策略将矩阵乘法时间复杂度降低到O(n^log7)的优化方法。通过将矩阵不断拆分为2×2子矩阵,然后进行7次乘法和多次加法运算,从而减少了乘法的数量。虽然仍存在递归方程,但总体效率显著提高。
          
最低0.47元/天 解锁文章
                          
                      
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					1556
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            