算法分析与设计——2.6 Strassen矩阵乘法

本文探讨Strassen算法在矩阵乘法中的应用,采用分治策略,通过7次乘法运算来提高效率。文章详细介绍了算法思想,并提供了矩阵乘法模板类的实现,最终展示运行结果。
摘要由CSDN通过智能技术生成

问题描述:给定两个大矩阵A和B,计算矩阵C=A*B

Strassen算法思想:

分治策略,定义7次乘法运算。

 

具体实现:

首先定义了矩阵乘法模板类

//定义模板矩阵乘法类
template<class T>
class Strassen_Matrix_Mul
{
public:
	void ADD(T **Matrix_A, T **Matrix_B, T **Matrix_Result, int MatrixSize);//矩阵加法
	void SUB(T **Matrix_A, T **Matrix_B, T **Matrix_Result, int MatrixSize);//矩阵减法
	void MUL(T **Matrix_A, T **Matrix_B, T **Matrix_Result, int MatrixSize);//矩阵乘法
	void FillMatrix(T **Matrix_A, T **Matrix_B,int MatrixSize);//矩阵填充,矩阵生成函数
	void PrintMatrix(T **Matrix_A, int MatrixSize);//矩阵输出函数
	void Strassen(T **Matrix_A, T **Matrix_B, T **Matrix_C, int MatrixSize,int Threshold);
};

并实现相关函数

ADD(T **Matrix_A, T **Matrix_B, T **Matrix_Result, int MatrixSize)
{
	for (int i = 0; i < MatrixSize; i++)
	{
		for (int j = 0; j < MatrixSize; j++)
		{
			Matrix_Result[i][j] = Matrix_A[i][j] + Matrix_B[i][j];
		}
	}
}


SUB(T **Matrix_A, T **Matrix_B, T **Matrix_Result, int MatrixSize)
{
	for (int i = 0; i < MatrixSize; i++)
	{
		for (int j = 0; j < MatrixSize; j++)
		{
			Matrix_Result[i][j] = Matrix_A[i][j] - Matrix_B[i][j];
		}
	}
}

MUL(T **Matrix_A, T **Matrix_B, T **Matrix_Result, int MatrixSize)
{
	for (int i = 0; i < MatrixSize; i++)
	{
		for (int j = 0; j < MatrixSize; j++)
		{
			Matrix_Result[i][j] = 0;
			for (int k = 0; k < MatrixSize; k++)
			{
				Matrix_Result[i][j] = Matrix_Result[i][j] + Matrix_A[i][k] * Matrix_B[k][j];
			}
		}
	}
}

FillMatrix(T **Matrix_A, T **Matrix_B, int MatrixSize)
{
	for (int row = 0; row < MatrixSize; row++)
	{
		for (int column = 0; column < MatrixSize; column++)
		{
			Matrix_B[row][column] = (Matrix_A[row][column] =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值