算法导论 习题15.4-5 15.4-6 找出一个n个数的序列中最长的单调递增子序列

本文介绍了如何利用动态规划在O(n^2)时间复杂度内找到一个n个数序列中最长的单调递增子序列。通过分析问题的最优子结构和重叠子问题,得出解决方案。当要求O(nlgn)时间复杂度时,提供了进一步的算法思路链接和代码实现。

算法导论15.4-5  请给出一个O(n^2)时间的算法,使之能找出一个n个数的序列中最长的单调递增子序列。

这个题目是在动态规划部分,此处显然是要用到动态规划。

我们知道可以使用动态规划思想的问题的的两个重要的特征是具有最优子结构重叠子问题。下面就来分析一下这个问题:

对于一个n个元素的序列nums,设其最长单调递增子序列为Sm(n)(m为递增子序列的长度),则对于Sm存在两种情况:

1、如果nums[n]比Sm-1的最后一个元素大,则Sm由Sm-1加nums[n]组成

2、如果nums[n]小于等于Sm-1的最后一个元素,则Sm即为Sm-1

但是这样考虑有问题,因为如果Sm-1的序列有多个,我们则应该每一个都与nums[n]考察,如果nums[n]比所有Sm-1的尾元素都小或相等,而Sm-2的序列中又存在尾元素小于nums[n]的序列,则我们应该如何选择,Sm应该是多少? Sm-1+nums[n]、Sm-1、Sm-2+nums[n]

所以之前的分析是有问题的,在长度相同的情况下,我们优先选择包含nums[n]的序列作为Sm(n),因为每一个新加入的元素都可能改变不同长度的递增子序列,因此我们需要维护每一个递增子序列以获取最优。

这里的最优子结构就是n个元素的最长递增子序列是从前n-1个元素结尾的递增子序列中的一个或者再加上nums[n],这里面自然存在很多重叠子问题。

代码如下:

/************************************************************************/
/* 算法导论15.4-5
 * 找出n个数的序列中最长的单调递增子序列
 * 利用动态规划思想,时间复杂度为O(n^2)*/
/*************************************************************
<think>嗯,时间复杂度O(n),这个概念听起来挺常见的,但具体是什么意思呢?让我仔细想想。好像之前学过一些算法的基础知识,可能和算法的执行时间有关吧? 首先,时间复杂度是用来衡量算法运行时间随着输入规模增长而增长的速度的。那O(n)里的n应该是指输入的规模,比如数组的元素个数或者链表节点的数量。O(n)表示算法的运行时间与输入规模n成线性关系,对吧? 举个例子可能会有帮助。比如说,遍历一个数组,对每个元素进行一次操作,这样的情况下,无论数组有多大,操作次数都和数组的长度n成正比。所以这样的算法时间复杂度就是O(n)。那如果是循环嵌套的话,比如两层循环,是不是时间复杂度就变成O(n&sup2;)了?这时候O(n)就比O(n&sup2;)要高效很多,尤其是在n很大的时候。 不过,O(n)具体是怎么计算出来的呢?是不是要去掉常数项和低次项?比如,如果一个算法时间是3n + 5,那么时间复杂度还是O(n),因为常数项和系数在大n的情况下变得不那么重要了。也就是说,大O表示法关注的是增长趋势,而不是具体的运行时间。 可能还需要区分一下不同的时间复杂度类别。比如,O(1)是常数时间,不管输入多大,时间都是固定的。O(log n)是对数时间,比如二分查找,效率比O(n)更高。而O(n)则处于中间位置,比O(1)和O(log n)慢,但比O(n&sup2;)快很多。 有没有例外的情况呢?比如,虽然算法大部分情况下是O(n),但在某些特殊情况下可能有不同的表现。比如,线性搜索最好情况下是O(1)(第一个元素就是目标),最坏和平均情况下是O(n)。但通常我们讨论时间复杂度时,可能更关注最坏情况或者平均情况,而大O通常指的是最坏情况? 不过,用户的问题只是要介绍O(n),所以可能不需要深入讨论其他情况,但需要明确O(n)的定义和应用场景。比如,常见的线性时间算法包括遍历数组、查找未排序的链表中的元素、计数排序等。 另外,可能需要解释为什么线性时间复杂度被认为是相对高效的。对于较大的数据集,O(n)算法的执行时间会随着n线性增长,而不会像高阶复杂度那样急剧上升。这使得O(n)算法在处理大规模数据时仍然可行,而高阶复杂度的算法可能变得不切实际。 总结来说,O(n)表示算法的执行时间与输入规模n成正比,是一种线性时间复杂度,常见于需要遍历整个输入数据的算法中。理解这一点有助于在设计和选择算法时,根据数据规模来预估性能表现。</think>### 时间复杂度$O(n)$的逐步解释 **1. 基本概念** 时间复杂度$O(n)$表示算法的执行时间与输入规模$n$成**正比**。这里的$n$通常指输入数据的数量,例如数组元素个数、链表节点数等。 **2. 核心特点** - **线性增长**:若输入规模$n$扩大2倍,执行时间也大约扩大2倍。 - **单层循环**:通常出现在需要**遍历整个输入**的算法中,例如遍历数组、链表等。 **3. 计算规则** - **忽略常数和低阶项**:例如,若实际时间为$3n + 5$,时间复杂度仍记为$O(n)$。 - **关注最高阶项**:大O表示法仅保留对时间影响最大的项。 **4. 示例** **例1:遍历数组求和** ```python def sum_array(arr): total = 0 for num in arr: # 循环次数 = n total += num return total ``` - 每个元素访问一次,操作次数为$n$,时间复杂度为$O(n)$。 **例2:查找未排序数组中的元素** ```python def linear_search(arr, target): for i in range(len(arr)): # 最坏情况下循环n次 if arr[i] == target: return i return -1 ``` - 最坏情况下需检查所有$n$个元素,时间复杂度为$O(n)$。 **5. 与其他复杂度对比** | 时间复杂度 | 增长趋势 | 典型算法 | |------------|----------------|----------------------| | $O(1)$ | 常数时间 | 数组索引访问 | | $O(\log n)$| 对数时间 | 二分查找 | | $O(n)$ | 线性时间 | 线性搜索、遍历 | | $O(n^2)$ | 平方时间 | 冒泡排序(最坏情况) | **6. 适用场景** - 数据规模较大但算法需遍历全部元素时(如统计、过滤)。 - 无法利用预先排序或哈希表优化的情况(如未排序数组的搜索)。 **7. 注意事项** - **常数因子影响**:实际应用中,$O(n)$算法的常数因子(如循环内的操作耗时)可能显著影响性能。 - **优化方向**:若需突破$O(n)$,可能需要更高效的数据结构(如哈希表)或算法策略(如分治)。 **总结** 时间复杂度$O(n)$是算法分析中的重要概念,表示执行时间随输入规模线性增长。理解它有助于在设计算法时平衡效率与资源消耗。
评论 8
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值