朴素贝叶斯的推理学习算法

原创 2016年08月30日 00:29:52
      贝叶斯公式简易推导式:

                 

    朴素贝叶斯的朴素在于假设B特征的每个值相互独立,所以朴素贝叶斯的公式是这样的

     

    学习与分类算法:

          

(1)计算先验概率和条件概率


  拉普拉斯平滑:

2)代入被测样本向量,得到不同类别P,再根据后验概率最大化,取P最大的类别作为该标签类别。


朴素贝叶斯优点在于对于小规模数据很好,适合多分类。缺点是数据输入形式敏感而且特征值之间的相互独立很难保证带来的影响。


具体实现代码和应用见github链接。https://github.com/AlanLin2015/Machine-Learning/tree/master/bayes



版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

BP神经网络原理及实现算法

BP网络模型处理信息的基本原理是:输入信号Xi通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号Yk,网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y与期望输出值t之间的偏...
  • JimMa
  • JimMa
  • 2012-09-06 22:03
  • 2139

SVD在推荐系统中的应用详解以及算法推导

前面文章SVD原理及推导已经把SVD的过程讲的很清楚了,本文介绍如何将SVD应用于推荐系统中的评分预测问题。其实也就是复现Koren在NetFlix大赛中的使用到的SVD算法以及其扩展出的RSVD、S...

深入浅出BP神经网络算法的原理

相信每位刚接触神经网络的时候都会先碰到BP算法的问题,如何形象快速地理解BP神经网络就是我们学习的高级乐趣了(画外音:乐趣?你在跟我谈乐趣?) 本篇博文就是要简单粗暴地帮助各位童鞋快速入门采取BP算...

DeepLearning tutorial(4)CNN卷积神经网络原理简介+代码详解

DeepLearning tutorial(4)CNN卷积神经网络原理简介+代码详解 @author:wepon @blog:http://blog.csdn.net/u012162613...

BP神经网络的数学原理及其算法实现

来源:http://blog.csdn.net/zhongkejingwang/article/details/44514073  什么是BP网络 BP神经网络,BP即Back Propagation...

KNN算法思想与应用例子

这篇文章是在学习KNN时写的笔记,所参考的书为《机器学习实战》,希望深入浅出地解释K近邻算法的思想,最后放一个用k近邻算法识别图像数字的例子。    KNN算法也称K近邻,是一种监督学习算法,即它需要...

深入浅出BP神经网络算法的原理

相信每位刚接触神经网络的时候都会先碰到BP算法的问题,如何形象快速地理解BP神经网络就是我们学习的高级乐趣了(画外音:乐趣?你在跟我谈乐趣?) 本篇博文就是要简单粗暴地帮助各位童鞋快速入门采取BP算法...

深度学习笔记(3)——CNN中一些特殊环节的反向传播

在深度学习笔记(2)——卷积神经网络(Convolutional Neural Network) 中我们介绍了CNN网络的前向传播,这一篇我们介绍CNN的反向传播,讲到反向传播的时候实质就是一大堆...

卷积神经网络概念与原理

一、卷积神经网络的基本概念        受Hubel和Wiesel对猫视觉皮层电生理研究启发,有人提出卷积神经网络(CNN),Yann Lecun 最早将CNN用于手写数字识别并一直保持了其在...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)