朴素贝叶斯的推理学习算法

原创 2016年08月30日 00:29:52
      贝叶斯公式简易推导式:

                 

    朴素贝叶斯的朴素在于假设B特征的每个值相互独立,所以朴素贝叶斯的公式是这样的

     

    学习与分类算法:

          

(1)计算先验概率和条件概率


  拉普拉斯平滑:

2)代入被测样本向量,得到不同类别P,再根据后验概率最大化,取P最大的类别作为该标签类别。


朴素贝叶斯优点在于对于小规模数据很好,适合多分类。缺点是数据输入形式敏感而且特征值之间的相互独立很难保证带来的影响。


具体实现代码和应用见github链接。https://github.com/AlanLin2015/Machine-Learning/tree/master/bayes



贝叶斯算法详解

从贝叶斯定理说开去 简介 贝叶斯定理是18世纪英国数学家托马斯·贝叶斯(Thomas Bayes)提出得重要概率论理论。以下摘一段 wikipedia ...
  • AnneQiQi
  • AnneQiQi
  • 2017年03月02日 20:43
  • 1744

机器学习算法----贝叶斯网络

本文转自:http://www.cnblogs.com/leoo2sk/archive/2010/09/18/bayes-network.html 原文作者:张洋 说实话贝叶斯网络还没有完全搞懂,...
  • Sunshine_in_Moon
  • Sunshine_in_Moon
  • 2016年04月28日 17:33
  • 2585

朴素贝叶斯理论推导与三种常见模型

朴素贝叶斯(Naive Bayes)是一种简单的分类算法,它的经典应用案例为人所熟知:文本分类(如垃圾邮件过滤)。很多教材都从这些案例出发,本文就不重复这些内容了,而把重点放在理论推导(其实很浅显,别...
  • u012162613
  • u012162613
  • 2015年09月09日 21:41
  • 17247

从朴素贝叶斯分类器到贝叶斯网络(下)

贝叶斯网络(Bayesian Network)是一种用于表示变量间依赖关系的数据结构,有时它又被称为信念网络(Belief Network)或概率网络(Probability Network)。在统计...
  • baimafujinji
  • baimafujinji
  • 2016年01月04日 00:49
  • 9748

Naive Bayes(朴素贝叶斯)

朴素贝叶斯的概念介绍以及参数估计
  • syoya1997
  • syoya1997
  • 2017年11月23日 21:03
  • 107

《信息论,推理和学习算法》学习笔记——概率,前向概率,反向概率

参考《信息论,推理和学习算法》 基本概念: 概率:随机试验中结果出现的频度; 置信度:个体对事件的猜测概率;注意此时该事件并无概率,只是对事件进行判断的主题根据现有证据,对事件属于某个分...
  • csl13
  • csl13
  • 2012年05月11日 23:39
  • 1332

机器学习理论 || 朴素贝叶斯

参考书籍:李航.统计学习方法 P48 周志华.机器学习P150 范明译.数据挖掘导论P141 根据条件独立性假设的强弱,贝叶斯...
  • qq_29737811
  • qq_29737811
  • 2017年12月26日 13:20
  • 36

朴素贝叶斯的那点事儿

在机器学习领域中,朴素贝叶斯是一种基于贝叶斯定理的简单概率分类器(分类又被称为监督式学习,所谓监督式学习即从已知样本数据中的特征信息去推测可能出现的输出以完成分类,反之聚类问题被称为非监督式学习),朴...
  • u011001084
  • u011001084
  • 2017年12月28日 10:58
  • 66

机器学习之朴素贝叶斯模型及代码示例

一、朴素贝叶斯的推导朴素贝叶斯学习(naive Bayes)是一种有监督的学习,训练时不仅要提供训练样本的特征向量X,而且还需提供训练样本的实际标记Y,是一种基于贝叶斯定理和特征条件独立假设的分类方法...
  • cxmscb
  • cxmscb
  • 2017年04月06日 15:07
  • 2351

(-)朴素贝叶斯学习(1)-机器学习中熵的理解

在学习NBC时,涉及te
  • MyProgramingLife
  • MyProgramingLife
  • 2014年10月17日 22:44
  • 484
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:朴素贝叶斯的推理学习算法
举报原因:
原因补充:

(最多只允许输入30个字)