关闭

朴素贝叶斯的推理学习算法

标签: 朴素贝叶斯机器学习监督学习Bayes数据挖掘
151人阅读 评论(0) 收藏 举报
分类:
      贝叶斯公式简易推导式:

                 

    朴素贝叶斯的朴素在于假设B特征的每个值相互独立,所以朴素贝叶斯的公式是这样的

     

    学习与分类算法:

          

(1)计算先验概率和条件概率


  拉普拉斯平滑:

2)代入被测样本向量,得到不同类别P,再根据后验概率最大化,取P最大的类别作为该标签类别。


朴素贝叶斯优点在于对于小规模数据很好,适合多分类。缺点是数据输入形式敏感而且特征值之间的相互独立很难保证带来的影响。


具体实现代码和应用见github链接。https://github.com/AlanLin2015/Machine-Learning/tree/master/bayes



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:38795次
    • 积分:468
    • 等级:
    • 排名:千里之外
    • 原创:14篇
    • 转载:0篇
    • 译文:0篇
    • 评论:6条
    文章分类
    最新评论