机器学习实战_05Logistic回归

主要思想:

根据现有数据对分类边界线建立回归公式,以此进行分类。

逻辑回归

逻辑回归可以用来进行回归与分类,两者仅有略微不同,主体算法是一样的,本文以分类进行讲解。如下图二分类问题,我们希望找到一个直线(高维空间为超平面)来将数据划分开。
这里写图片描述

这样的线性边界可以表示为:
这里写图片描述
上式右边x为向量。

我们取预测函数为Sigmoid函数,
这里写图片描述

Sigmoid函数有一个很棒的特点是它的导数
这里写图片描述
即:

这里写图片描述

则预测函数可表示为:
这里写图片描述

将这两个式子合并一下:
这里写图片描述

显然:
取似然函数
这里写图片描述

我们的目的就是求解似然函数的最大值,为了方便求解,我们取对数似然函数如下:
这里写图片描述

如此,我们就可以使用如下的式子进行梯度上升算法迭代更新的取值:
这里写图片描述
下面求解
这里写图片描述
这里写图片描述
所以权重的迭代更新式为:
这里写图片描述
其中α为更新率

梯度上升
有了以上的逻辑回归的理论基础,下面我们编程实现这一步骤。就以第一张图的样本为例进行,样本维数为3维,采用梯度上升算法进行迭代。
迭代步数自己选择

批量梯度上升

批量梯度上升每进行一次迭代更新就会计算所有样本,因此得到的模型正确率比较高,但同时计算复杂度高,算法耗时。计算过程如下:

1.首先根据权重和训练样本计算估计值

这里写图片描述

2.计算误差
这里写图片描述
3.迭代更新
这里写图片描述

随机梯度上升

根据样本数量进行迭代,每计算一个样本就进行一次更新,过程如下:
1.计算x(i)样本对应的估计值
这里写图片描述
2.计算误差
这里写图片描述
注意,此处的误差是一个自然数,不再是个向量
3.迭代更新
这里写图片描述
以上步骤更新m次。

代码如下

from numpy import *

#读取文件
def loadDataSet():
    dataMat = []; labelMat = []
    fr = open('testSet.txt')
    for line in fr.readlines():
        lineArr = line.strip().split()
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
        labelMat.append(int(lineArr[2]))
    return dataMat,labelMat

# sigmoid函数
def sigmoid(inX):
    return 1.0/(1+exp(-inX))
#梯度上升法
def gradAscent(dataMatIn, classLabels):
    dataMatrix = mat(dataMatIn)            
    labelMat = mat(classLabels).transpose()
    m,n = shape(dataMatrix)
    alpha = 0.001
    maxCycles = 500
    weights = ones((n,1))
    for k in range(maxCycles):            
 # h不是一个数,而是一个列向量,列向量的个数等于样本的个数
        h = sigmoid(dataMatrix*weights)   
        error = (labelMat - h)       
 # 更新     
        weights = weights + alpha * dataMatrix.transpose()* error #matrix mult
    return weights


# 画出决策边
def plotBestFit(weights):
    import matplotlib.pyplot as plt
    dataMat,labelMat=loadDataSet()
    dataArr = array(dataMat)
    n = shape(dataArr)[0] 
    xcord1 = []; ycord1 = []
    xcord2 = []; ycord2 = []
    for i in range(n):
        if int(labelMat[i])== 1:
            xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
        else:
            xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
    ax.scatter(xcord2, ycord2, s=30, c='green')
    x = arange(-3.0, 3.0, 0.1)
    y = (-weights[0]-weights[1]*x)/weights[2]
    ax.plot(x, y)
    plt.xlabel('X1'); plt.ylabel('X2');
    plt.show()

#随机梯度上升算法与梯度上升算法在代码上很相似,但也有一些区别:第一,梯度的变量和误差都是向量,而随机梯度则全是数值;第二,随机梯度没有矩阵的转换过程,所有变量的数据类型都是numpy数组。

# 随机梯度1
def stocGradAscent0(dataMatrix, classLabels):
    m,n = shape(dataMatrix)
    alpha = 0.01
    weights = ones(n)   #initialize to all ones
    for i in range(m):
        h = sigmoid(sum(dataMatrix[i]*weights))
        error = classLabels[i] - h
        weights = weights + alpha * error * dataMatrix[i]
    return weights

# 改进版随机梯度上升法
def stocGradAscent1(dataMatrix, classLabels, numIter=150):
    m,n = shape(dataMatrix)
    weights = ones(n)   
    for j in range(numIter):
        dataIndex = range(m)
        for i in range(m):
#改进:虽然步长会随着迭代次数不断减小,但永远不会减小到0,这是因为计算中还存在一个常数项,必须这样做的原因是为了保证在多次迭代之后新数据仍然具有一定的影响。
            alpha = 4/(1.0+j+i)+0.0001   
            randIndex = int(random.uniform(0,len(dataIndex)))
            h = sigmoid(sum(dataMatrix[randIndex]*weights))
            error = classLabels[randIndex] - h
            weights = weights + alpha * error * dataMatrix[randIndex]
            del(dataIndex[randIndex])
    return weights

def classifyVector(inX, weights):
    prob = sigmoid(sum(inX*weights))
    if prob > 0.5: return 1.0
    else: return 0.0

def colicTest():
    frTrain = open('horseColicTraining.txt'); frTest = open('horseColicTest.txt')
    trainingSet = []; trainingLabels = []
    for line in frTrain.readlines():
        currLine = line.strip().split('\t')
        lineArr =[]
        for i in range(21):
            lineArr.append(float(currLine[i]))
        trainingSet.append(lineArr)
        trainingLabels.append(float(currLine[21]))
    trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 1000)
    errorCount = 0; numTestVec = 0.0
    for line in frTest.readlines():
        numTestVec += 1.0
        currLine = line.strip().split('\t')
        lineArr =[]
        for i in range(21):
            lineArr.append(float(currLine[i]))
        if int(classifyVector(array(lineArr), trainWeights))!= int(currLine[21]):
            errorCount += 1
    errorRate = (float(errorCount)/numTestVec)
    print "the error rate of this test is: %f" % errorRate
    return errorRate

def multiTest():
    numTests = 10; errorSum=0.0
    for k in range(numTests):
        errorSum += colicTest()
    print "after %d iterations the average error rate is: %f" % (numTests, errorSum/float(numTests))
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值