目录
一、Logistic回归介绍
假设现在有一些数据点,我们用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作回归。利用Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。这里的“回归”一词源于最佳拟合,表示要找到最佳拟合参数集。训练分类器时的做法就是寻找最佳拟合参数,使用的是最优化算法。
1.Logistic回归的一般过程
- 收集数据:采用任意方法收集数据。
- 准备数据:由于需要进行距离计算,因此要求数据类型为数值型。另外,结构化数据格式则最佳。
- 分析数据:采用任意方法对数据进行分析。
- 训练算法:大部分时间将用于训练,训练的目的是为了找到最佳的分类回归系数。
- 测试算法:一旦训练步骤完成,分类将会很快。
- 使用算法:首先,我们需要输入一些数据,并将其转换成对应的结构化数值;接着,基于训练好的回归系数就可以对这些数值进行简单的回归计算,判定它们属于哪个类别;在这之后,我们就可以在输出的类别上做一些其他分析工作。
2.Logistic回归的特点
优点:计算代价不高,易于理解和实现。
缺点:容易欠拟合,分类精度可能不高。
适用数据类型:数值型和标称型数据。
二、基于Logistic回归和Sigmoid函数的分类
我们想要的函数应该是,能接受所有的输入然后预测出类别。例如,在两个类的情况下,上述函数输出0或1。Sigmoid函数(Logistic函数)拥有这样的性质。Sigmoid函数具体的计算公式如下:
整合成一个公式,就变成了如下公式:
z是一个矩阵,θ是参数列向量(要求解的),x是样本列向量(给定的数据集)。θ^T表示θ的转置。g(z)函数实现了任意实数到[0,1]的映射,这样我们的数据集([x0,x1,…,xn]),不管是大于1或者小于0,都可以映射到[0,1]区间进行分类。
下图是Sigmoid函数在不同坐标尺度下的两条曲线图:
当x为0时,Sigmoid函数值为0.5,随着x的增大,对应的Sigmoid值将逼近于1;而随着x的减小,Sigmoid值将逼近与0。如果横坐标足够大,Sigmoid函数将看起来像一个阶跃函数。
三、基于最优化方法的最佳回归系数确定
Sigmoid函数的输入记为z,由下面公式得出:
根据向量的写法,上述公式写成,其中,x是分类器的输入数据,向量w就是我们要找的最佳参数(系数),为了寻找最优化w值,还需要用到最优化理论。
1.梯度上升法
梯度上升法基于的思想是:要找到某函数的最大值,最好的方法是沿着该函数的梯度方向探寻。如果梯度记为∇,则函数f(x,y)的梯度由下式表示:
这个梯度意味着要沿x的方向移动,沿y的方向移动。其中,函数f(x,y)必须要在待计算的点上有定义并且可微。一个具体的函数例子见下图。
梯度上升算法到达每个点后都会重新估计移动的方向。从P0开始,计算完该点的梯度,函数就根据梯度移动到下一点P1。在P1点,梯度再次被重新计算,并沿新的梯度方向移动到P2.如此循环迭代,知道满足通知条件。迭代的过程中,梯度算子总是保证我们能选取到最佳的移动方向
上图中的梯度上升算法沿梯度方向移动了一步。可以看到,梯度算子总是指向函数值增长最快的方向。这里所说的是移动方向,而未提到移动量的大小。该量值称为步长,记作α。用向量来表示的话,梯度上升算法的迭代公式如下:
该公式将一直迭代执行,直至达到某个停止条件为止,b比如迭代次数达到某个值或者算法达到某个可以允许的误差范围。
2.梯度下降法
如果是梯度下降法,那就是按梯度上升的反方向迭代公式即可,对应的公式如下: