机器学习实战——logistic回归

本文详细介绍了Logistic回归,包括一般过程、特点、Sigmoid函数在分类中的应用以及如何通过最优化方法确定最佳回归系数。讨论了梯度上升法和梯度下降法,重点阐述了改进的随机梯度上升算法在降低计算量的同时提高收敛效果。此外,还展示了在MNIST数据集上的应用。
摘要由CSDN通过智能技术生成

目录

一、Logistic回归介绍

1.Logistic回归的一般过程

2.Logistic回归的特点

二、基于Logistic回归和Sigmoid函数的分类

三、基于最优化方法的最佳回归系数确定

1.梯度上升法

2.梯度下降法

四、训练算法:使用梯度上升找到最佳参数

1.数据准备

2.训练算法

3.绘制决策边界

4.随机梯度上升算法

5.改进的随机梯度上升算法

6.回归系数与迭代次数的关系

五、使用逻辑回归进行MNIST数据集分类


一、Logistic回归介绍

        假设现在有一些数据点,我们用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作回归。利用Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。这里的“回归”一词源于最佳拟合,表示要找到最佳拟合参数集。训练分类器时的做法就是寻找最佳拟合参数,使用的是最优化算法。

1.Logistic回归的一般过程

  1. 收集数据:采用任意方法收集数据。
  2. 准备数据:由于需要进行距离计算,因此要求数据类型为数值型。另外,结构化数据格式则最佳。
  3. 分析数据:采用任意方法对数据进行分析。
  4. 训练算法:大部分时间将用于训练,训练的目的是为了找到最佳的分类回归系数。
  5. 测试算法:一旦训练步骤完成,分类将会很快。
  6. 使用算法:首先,我们需要输入一些数据,并将其转换成对应的结构化数值;接着,基于训练好的回归系数就可以对这些数值进行简单的回归计算,判定它们属于哪个类别;在这之后,我们就可以在输出的类别上做一些其他分析工作。

2.Logistic回归的特点

优点:计算代价不高,易于理解和实现。
缺点:容易欠拟合,分类精度可能不高。
适用数据类型:数值型和标称型数据。

二、基于Logistic回归和Sigmoid函数的分类

我们想要的函数应该是,能接受所有的输入然后预测出类别。例如,在两个类的情况下,上述函数输出0或1。Sigmoid函数(Logistic函数)拥有这样的性质。Sigmoid函数具体的计算公式如下:

 整合成一个公式,就变成了如下公式:

z是一个矩阵,θ是参数列向量(要求解的),x是样本列向量(给定的数据集)。θ^T表示θ的转置。g(z)函数实现了任意实数到[0,1]的映射,这样我们的数据集([x0,x1,…,xn]),不管是大于1或者小于0,都可以映射到[0,1]区间进行分类。

下图是Sigmoid函数在不同坐标尺度下的两条曲线图:

当x为0时,Sigmoid函数值为0.5,随着x的增大,对应的Sigmoid值将逼近于1;而随着x的减小,Sigmoid值将逼近与0。如果横坐标足够大,Sigmoid函数将看起来像一个阶跃函数。

三、基于最优化方法的最佳回归系数确定

Sigmoid函数的输入记为z,由下面公式得出:

根据向量的写法,上述公式写成,其中,x是分类器的输入数据,向量w就是我们要找的最佳参数(系数),为了寻找最优化w值,还需要用到最优化理论。

1.梯度上升法

        梯度上升法基于的思想是:要找到某函数的最大值,最好的方法是沿着该函数的梯度方向探寻。如果梯度记为∇,则函数f(x,y)的梯度由下式表示:

这个梯度意味着要沿x的方向移动,沿y的方向移动。其中,函数f(x,y)必须要在待计算的点上有定义并且可微。一个具体的函数例子见下图。

        梯度上升算法到达每个点后都会重新估计移动的方向。从P0开始,计算完该点的梯度,函数就根据梯度移动到下一点P1。在P1点,梯度再次被重新计算,并沿新的梯度方向移动到P2.如此循环迭代,知道满足通知条件。迭代的过程中,梯度算子总是保证我们能选取到最佳的移动方向

       上图中的梯度上升算法沿梯度方向移动了一步。可以看到,梯度算子总是指向函数值增长最快的方向。这里所说的是移动方向,而未提到移动量的大小。该量值称为步长,记作α。用向量来表示的话,梯度上升算法的迭代公式如下:

该公式将一直迭代执行,直至达到某个停止条件为止,b比如迭代次数达到某个值或者算法达到某个可以允许的误差范围。

2.梯度下降法

        如果是梯度下降法,那就是按梯度上升的反方向迭代公式即可,对应的公式如下: 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值