#Deep Learning回顾#之2006年的Science Paper

原创 2016年08月30日 12:18:25

大家都清楚神经网络在上个世纪七八十年代是着实火过一回的,尤其是后向传播BP算法出来之后,但90年代后被SVM之类抢了风头,再后来大家更熟悉的是SVM、AdaBoost、随机森林、GBDT、LR、FTRL这些概念。究其原因,主要是神经网络很难解决训练的问题,比如梯度消失。当时的神经网络研究进入一个低潮期,不过Hinton老人家坚持下来了。

功夫不负有心人,2006年Hinton和学生发表了利用RBM编码的深层神经网络的Science Paper:Reducing the Dimensionality of Data with Neural Networks,不过回头来看,这篇paper在当今的实用性并不强,它的更大作用是把神经网络又推回到大家视线中,利用单层的RBM自编码预训练使得深层的神经网络训练变得可能,但那时候Deep learning依然争议很多,最终真正爆发是2012年的ImageNet的夺冠,这是后话。

flow

如图中所示,这篇paper的主要思想是使用受限RBM先分层训练,受限的意思是不包含层内的相互连接边(比如vi*vj或hi*hj)。每一层RBM训练时的目标是使得能量最小:

rbm

能量最小其实就是P(v, h)联合概率最大,而其他v’相关的p(v’, h)较小,后面这个是归一化因子相关。这块如果理解有问题的,需要补一下RBM相关知识,目前网上资料不少了。

大致的过程为,从输入层开始,不断进行降维,比如左图中的2000维降到1000维, 降维时保证能量最小,也就是输出h和输入v比较一致,而和其他输入v’不一致,换句话说,输出尽量保证输入的信息量。降维从目标上比较类似于PCA,但Hinton在文章说这种方法比PCA效果会好很多,尤其是经过多层压缩的时候(比如784个像素压缩到6个实数),从原理应该也是这样的,RBM每一层都尽量保留了输入的信息。

预训练结束后,就会展开得到中间的解码器,这是一个叠加的过程,也就是下一层RBM的输出作为上一层RBM的输入。

最后再利用真实数据进行参数细调,目标是输入图片经过编码解码后尽量保持原图信息,用的Loss函数是负Log Likelihood:
likelihood

这篇在今天看来实用性不太大,难度也不大,但在当时这篇文章看起来还是晦涩的,很多原理没有细讲。为何能中Science?个人认为,毕竟Hinton是神经网络的泰斗,换个人名不见经传的人估计中不了,另外这篇文章也确实使得以前不可能的深层神经网络变得可能了,在今天依然有很多可以借鉴的地方,细心的同学会发现上百或上千层的ResNet的思想在一定程度上和这篇论文是神似的。ResNet也是意识到深层(152层)不好直接训练,那就在单层上想办法,将原来直接优化H(x)改为优化残差F(x) = H(x)-x,其中H(X)是某一层原始的的期望映射输出,x是输入,相当于输入x有个直通车到达该层输出,从而使得单层的训练更加容易。

参考资料:

[1] Paper:http://www.cs.toronto.edu/~hinton/science.pdf

[2] 代码:http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html


本文只是简单回顾,疏漏之处敬请谅解,感兴趣的可以加QQ群一起学习:252085834

版权声明:本文为博主原创文章,未经博主允许不得转载。欢迎关注我们的网站(https://www.52ml.net),对机器学习感兴趣的欢迎加入我们的QQ群:252085834。

个人阅读的Deep Learning方向的paper整理

个人阅读的Deep Learning方向的paper整理 分类: 机器学习2014-03-10 10:42 5656人阅读 评论(1) 收藏 举报 http://hi.baid...

[Paper 学习笔记]PCANet: A Simple Deep Learning Baseline for Image Classification?

一、 PCANet简介一种用于图像分类的深度学习网络,用于提取图像中的特征。主要由级联的PCA filters、binary hashing和块直方图构成。相比于RandNet和LDANet,性能更佳...

【转载】Deep Learning方向的paper整理

Deep Learning方向的paper整理,分了几部分吧,但有些部分是有交叉或者内容重叠,也不必纠结于这属于DNN还是CNN之类,个人只是大致分了个类。目前只整理了部分,剩余部分还会持续更新。 ...
  • Inger_H
  • Inger_H
  • 2015年10月14日 14:08
  • 431

【深度学习笔记】个人阅读的Deep Learning方向的paper整理

 写在前面: 最近看文章毫无头绪,文章一把抓乱看,看到下面这个博客来忍不住转载过来,以便自己不用到处找论文。 以下是转载部分 ===========================...

个人阅读的Deep Learning方向的paper整理

http://hi.baidu.com/chb_seaok/item/6307c0d0363170e73cc2cb65 个人阅读的Deep Learning方向的paper整理,分了几部分吧...

【深度学习笔记】个人阅读的Deep Learning方向的paper整理

转载来源: 人阅读的Deep Learning方向的paper整理 个人阅读的Deep Learning方向的paper整理,分了几部分吧,但有些部分是有交叉或者内容重叠,也不必纠结于这属于DNN还...

Deep Learning paper reading

H. Goh, N. Thome, M. Cord, J. Lim的Top-Down Regularization of Deep Belief Networks提出在学习DBN的时候在layerwi...

个人阅读的Deep Learning方向的paper整理

转自:http://blog.csdn.net/sunmenggmail/article/details/20904867 http://hi.baidu.com/chb_seaok...

Deep Learning回顾之基于深度学习的目标检测

转自:https://www.52ml.net/20287.html 引言 普通的深度学习监督算法主要是用来做分类,如图1(1)所示,分类的目标是要识别出图中所示是一只猫。而在ILSVRC...
  • zouroot
  • zouroot
  • 2017年02月04日 12:26
  • 1128

#Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet

Deep Learning一路走来,大家也慢慢意识到模型本身结构是Deep Learning研究的重中之重,而本文回顾的LeNet、AlexNet、GoogLeNet、VGG、ResNet又是经典中的...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:#Deep Learning回顾#之2006年的Science Paper
举报原因:
原因补充:

(最多只允许输入30个字)