Hinton 论文系列《A fast learning algorithm for deep belief nets》

1 简介

本文根据2006年Hinton等人写的《A fast learning algorithm for deep belief nets》翻译总结。

学习一个紧密连接、有向的、有很多隐藏层的信念网络是很困难的,因为在给定一个数据向量下,很难推断隐藏活动下的条件分布。

本文中,我们显示了是有可能学习一个深度、紧密相连的信念网络,一次学习一层。进行如此学习方式的一种是假定当学习低层时,较高的层不存在;但这与简单的因子化相似(替换难处理的后验分布)不相容。为了使这些相似起作用,我们需要真的后验尽可能逼近因子化。所以不是忽略较高层,而是假定他们存在,只是有捆绑的权重,他们满足互补先验分布(Complementary Prior),以使真后验分布可以因子化。这就相当于拥有了一个无向模型,可以使用对比散度(contrastive divergence)有效的学习。

本文没有基础知识读起来很费劲,先暂时翻译几个关键词:explains away、Complementary Prior等。

2 互补先验分布(Complementary Prior)

2.1 explains away

explains away,英文意思辩解、搪塞,我觉得在这里翻译翻译成“解释不清楚”更好些。

如下图,一个简单的逻辑信念网络,当我们预测house jumps时,有两个独立的、罕见的原因,他们是反相关的。Earth quake上的-10表示,其有e10倍的可能性是关闭状态,而e(-10)倍的概率是打开状态。如果Earth quake节点是打开状态、truck 节点是关闭状态,jump节点的整个输入就会是0(+20,-20求和等于0),即jump节点各有50%概率是打开状态还是关闭状态。jump的概率高于e^(-20)的概率(隐藏状态(Earth quake、truck)的任何一个都没有开启),这种情况容易被观察解释。也无需将两个隐藏状态都打开来解释jump的现象,因为两个都打开的概率是e(-10)*e(-10)=e^(-20)。当Earth quake节点是打开状态时,对于truck节点就存在explains away,即解释不清楚truck节点的价值,它到底起没起作用。

在这里插入图片描述

2.2 Complementary Prior

explains away现象的存在使有向信念网络预测困难。

如果一个逻辑信念网络只有一层,基于隐藏变量的先验分布是可以因子化的,因为他们的二值状态可以被选择是独立的。后验分布中的非独立来自于数据中的可能项。我们可以通过如下方法在第一隐藏层消除explains away:使用一个额外的隐藏层来创建一个“complementary” prior,其与可能项中的相关性正好相反。然后当可能项与先验相乘时,我们得到的后验就可以使因子化的。Complementary prior的存在不会太明显,如下图显示的无限逻辑信念网络,带着捆绑权重,prior在每一个隐藏层中都会被Complementary。使用捆绑权重来构建“Complementary prior”就像一个骗局,将有向模型等价到无向模型。如我们将要展示的那样,这就产生了一个新颖的、非常有效的学习算法,其逐渐将更高层的权重与当前层的权重解绑。

在这里插入图片描述

3 Restricted Boltzmann machines and contrastive divergence learning

RBM和无限有向网络(带有tied 权重)是等价的。

在RBM中contrastive divergence learning实际上足够有效的。

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值