Deep Learning Paper读后简记

博主分享了深度学习领域的论文阅读心得,重点关注了量化、剪枝、分割和神经架构搜索等方面。文中提到,针对量化问题,研究提出通过KURTosis Regularization改善模型的鲁棒性;在剪枝领域,采用可微的极化门函数稳定神经网络的结构优化;在分割任务中,介绍了一种双支路结构的实时语义分割模型;在NAS方面,讨论了将量化感知与结构搜索结合的新方法。
摘要由CSDN通过智能技术生成

发现自己看完paper,总是很快就会被大脑删档,特此进行专栏记录,希望能够持续更新---


Quantization

Robust Quantization: One Model to Rule Them All paper code **

针对于目前的qat等方法所得到的模型对于不同的量化参数设置太敏感的问题,提出训练一个足够robust的模型,能够普适地用于不同场景下的不同量化超参。文中证明了uniform的权重分布相比于一般的normal的权重分布更加robust更加抗噪,提出通过引入 KURE(KUrtosis REgularization) 的loss,能够使得网络参数向着uniform distribution的方向学习,从而获得更加robust的模型。实验证明对于PTQ和QAT都极大提高了鲁棒性,但在最高精度上并不占优。

Fully Quantized Network for Object Detection. paper *

本文主要研究方向是全量化的检测模型,主要针对目前的有些量化方法未考虑网络中所有层的量化操作而导致的精度和速度方面的影响,以及目前检测任务在较大压缩比(4bit)时的不稳定和不收敛问题。文章通过监测4bit 量化后ft过程中w/a的数据分布,发现不稳定问题主要是来源于BN等层的影响,和部分aactivation中的离散值影响,以及layer-wise量化对不同channel的不友好。因此提出了一些改进方法,例如在ft中冻结BN的参数,对activation进行normalize,丢弃异常值,channel-wise量化等操作。文章整体更像是工程改进,但对于数据分布的分析及结论还是比较有意义的。

Differentiable Soft Quantization: Bridging Full-Precision and Low-Bit Neural Networks

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值