1. 先准备好你的数据文件,csv格式,该文件共3列,第一列是数据id,第2列是预测分数(0到1),第3列是数据的label(0或1)
2. 运行下面的python程序:python tf_roc.py /tmp/predict_label.csv 200 /tmp/tb_roc
3. 其中第2个参数200表示画ROC曲线的精度,越大,曲线越精细。
4. 启动tensorboard: tensorboard --logdir=/tmp/tb_roc
5. 打开浏览器http://127.0.0.1:6006/, 结果如下图
6. 关于画图方法。其实tensorboard无法画散点图。因此这里采用SummaryWriter的add_summary中第2个参数global_step来替代ROC中的横坐标fpr。globa_step原来是用来表示训练时的迭代次数的。为了能在tb中显示出来,需要把tpr放大100倍,或是1000倍。
7. 代码如下
import sys
import tensorflow as tf
class tf_roc():
def __init__(self, predict_label_file, threshold_num, save_dir):
'''file format: dataid,predict_score,label
the predict_score should be between 0 and 1
the

本文介绍了如何使用TensorFlow绘制ROC曲线。首先准备CSV数据,包含ID、预测分数和标签。然后通过Python程序`tf_roc.py`处理数据,设置精度参数。运行TensorBoard并查看结果,虽然TensorBoard不直接支持散点图,但通过调整`global_step`和数据比例,可以在TensorBoard中展示ROC曲线的关键信息。
最低0.47元/天 解锁文章
6073





