用图卷积来建模视频

本文探讨了如何使用图卷积网络(GCN)对视频进行建模,介绍了在ECCV2018上的研究工作,通过GCN层次地表示帧、镜头、事件和视频,实现多级结构的特征抽取,从而获得更优的视频语义embedding。相对于传统的序列建模方法,如LSTM和NetVLAD,GCN在视频理解和聚类任务上展现出更好的性能和效率。

图卷积被多个领域广泛关注,本文介绍下我在ECCV2018年上的一个工作,用图卷积来建模视频:Hierarchical Video Frame Sequence Representation with Deep Convolutional Graph Network,希望能做视频建模的带来些思路。

如何对视频进行建模呢?也就是如何用一个或多个向量表达一个视频呢?

视频指纹算是一种通用的特征,它一般是一种手工设计的特征,采用颜色空间、纹理空间的统计值作为特征,并进行压缩编码,对视频每帧(或关键帧)都进行提取。这种视频指纹主要用于同源匹配,结果可以定位精确到毫秒,是一种不带语义的embedding,泛化性不高。

而带语义的embedding是一种获得泛化性好的特征。首先我们会对帧进行采样,然后过CNN网络提取单帧embedding,接着通过一个序列建模,获得一个全局的语义embedding。基于这个embedding,我们可以进行分类、检索、聚类等任务。

比如可以采用无参的方法,即手工设计一个融合策略,包括均值计算等。也可以用序列表达的常用方法LSTM。目前效果比较好的征聚合方法是NetVLAD。相对域VLAD,VLAD的表达中心不可变,而NetVLAD是可变的,聚类中心随着训练的进行不断的调整,因此可以不在中心。如下图,通过上面这个分支获得每个特征属于当前某中心的概率,然后用这个概率集去对原始特征集进行加权平均。获得kxd的特征向量。

评论 8
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mao_feng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值