图卷积被多个领域广泛关注,本文介绍下我在ECCV2018年上的一个工作,用图卷积来建模视频:Hierarchical Video Frame Sequence Representation with Deep Convolutional Graph Network,希望能做视频建模的带来些思路。
如何对视频进行建模呢?也就是如何用一个或多个向量表达一个视频呢?
视频指纹算是一种通用的特征,它一般是一种手工设计的特征,采用颜色空间、纹理空间的统计值作为特征,并进行压缩编码,对视频每帧(或关键帧)都进行提取。这种视频指纹主要用于同源匹配,结果可以定位精确到毫秒,是一种不带语义的embedding,泛化性不高。
而带语义的embedding是一种获得泛化性好的特征。首先我们会对帧进行采样,然后过CNN网络提取单帧embedding,接着通过一个序列建模,获得一个全局的语义embedding。基于这个embedding,我们可以进行分类、检索、聚类等任务。
比如可以采用无参的方法,即手工设计一个融合策略,包括均值计算等。也可以用序列表达的常用方法LSTM。目前效果比较好的征聚合方法是NetVLAD。相对域VLAD,VLAD的表达中心不可变,而NetVLAD是可变的,聚类中心随着训练的进行不断的调整,因此可以不在中心。如下图,通过上面这个分支获得每个特征属于当前某中心的概率,然后用这个概率集去对原始特征集进行加权平均。获得kxd的特征向量。

本文探讨了如何使用图卷积网络(GCN)对视频进行建模,介绍了在ECCV2018上的研究工作,通过GCN层次地表示帧、镜头、事件和视频,实现多级结构的特征抽取,从而获得更优的视频语义embedding。相对于传统的序列建模方法,如LSTM和NetVLAD,GCN在视频理解和聚类任务上展现出更好的性能和效率。
最低0.47元/天 解锁文章





