[cvpr2017]Mind the Class Weight Bias: Weighted Maximum Mean Discrepancy for Unsupervised DA

introduce

  • 本文研究的范围仅限于UDA(unsupervised domain adaptation)
  • 作者认为使用MMD(maximum mean discrepancy)来衡量source domain和target domain之间的差异不够准确,这是因为没有考虑class prior distributions(类的先验分布,就是某个类在整个domain中所占的比重),为了解决这个问题,作者提出了一个叫做weighted MMD(WMMD)的模型。(Despite the great success
    achieved, existing ones(MMD-based methods) generally ignore the changes of
    class prior distributions, dubbed by class weight bias.)
  • 对基于MMD的域适应方法来说,对class weight bias(各个类中的样本数所占的比重应该就是class weight)的忽略可能导致性能的下降(For MMD-based methods, the ignorance of class weight
    bias can deteriorate the domain adaptation performance)
  • 如下图:

    • MMD的限制在于当source domain和taregt domian中的class weight不同(或者如图中所示,更严重地target domain缺少source domain中的类)时,使用MMD会导致错误的分类(MMD会使得target domain的class weight强行与source domain一致)。
    • 然而问题是,target domain是没有label的,所以target domain的class weight是未知的
    • 因此作者首先引入了class-specific auxiliary
      weights(类特定辅助权重?)来对source domain进行reweight,使得source domain的class weight和target domain的完全一致。
    • 通过最小化weighted MMD(WMMD)的目标函数来共同优化auxiliary
      weights的估计量和模型参数学习。
    • 作者使用一个叫做 classification EM (CEM)的方案来估计他。
    • 在E步骤和C步骤中,计算类后验概率(target domain的class weight的后验概率),将伪标签(pesudo label)分配给target domain的样本,并估计auxiliary
      weights。
    • 在M步骤当中,通过最小化目标函数的损失来更新参数(普通的机器学习训练过程)。

maximum mean discrepancy

  • (MMD基础理论部分,数学用语很多,不想翻译了,我就直接贴截图了)

Weighted Maximum Mean Discrepancy

  • ps(xs) pt(xt) :source domain和target domain的概率分布密度
  • 以上二者都可以用类的条件分布的混合来表示:

    • 其中 wsc=ps(ys=c) wsc=ps(yt=c) 就是前文所提到的class prior probility(class weight)。
  • MMD比较的是 ps(xs) pt(xt) ,也就是概率密度,但作者认为比较source domain和target domain的条件概率密度 ps(xs|ys=c) pt(xt|yt=c) 更为有效(这个是判别式模型(discrinimative model)学习的目标:类的后验概率)
  • 作者建议利用reference source distribution ps,α(xs) 来计算source domain和target domain之间的差异(discrepancy)
  • 要求 ps,α(xs) 和target domain有一样的class weight( wsc=ps(ys=c) )并且保留source domain的条件概率密度( ps(xs|ys=c) ),所以:

  • weight MMD的基本形式:(利用 ps,α(xs) pt(xt) 来计算):

    • weight MMD的线性复杂度近似(为了速度和SGD,详细的理论见上面MMD后半部分)

Weighted Domain Adaptation Network

  • 作者认为WMMD正则化层需要加载CNN的高层,因为dataset bias会在高层增加:
  • WDAN(Weighted Domain Adaptation Network)模型:

  • 优化WDAN的过程:
    • E-step:估计target domain的类 {xtj}Nj=1 的后验概率(class posterior probility)
    • C-step:基于E-step中计算出的最大的class posterior probility,将伪标签(pseudo-label) {yˆNj=1} 赋给每个 xtj ,并且估计辅助权重(auxiliary weights) α
    • M-step:在给定的 α {yˆNj=1} 下更新模型参数 W <script type="math/tex" id="MathJax-Element-21">W</script>:

experiment

SOURCE CODE



  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
CVPR 2019中发表了一篇题为“迁移学习:无监督领适应的对比适应网络(Contrastive Adaptation Network for Unsupervised Domain Adaptation)”的论文。这篇论文主要介绍了一种用于无监督领适应的对比适应网络。 迁移学习是指将从一个源领学到的知识应用到一个目标领的任务中。在无监督领适应中,源领和目标领的标签信息是不可用的,因此算法需要通过从源领到目标领的无监督样本对齐来实现知识迁移。 该论文提出的对比适应网络(Contrastive Adaptation Network,CAN)的目标是通过优化源领上的特征表示,使其能够适应目标领的特征分布。CAN的关键思想是通过对比损失来对源领和目标领的特征进行匹配。 具体地说,CAN首先通过一个共享的特征提取器来提取源领和目标领的特征表示。然后,通过对比损失函数来测量源领和目标领的特征之间的差异。对比损失函数的目标是使源领和目标领的特征在特定的度量空间中更加接近。最后,CAN通过最小化对比损失来优化特征提取器,以使源领的特征能够适应目标领。 该论文还对CAN进行了实验验证。实验结果表明,与其他无监督领适应方法相比,CAN在多个图像分类任务上取得了更好的性能,证明了其有效性和优越性。 综上所述,这篇CVPR 2019论文介绍了一种用于无监督领适应的对比适应网络,通过对源领和目标领的特征进行对比学习,使得源领的特征能够适应目标领。该方法在实验中展现了较好的性能,有望在无监督领适应任务中发挥重要作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值