# Codeforces Round #290 (Div. 2) E. Fox And Dinner 网络流 最大流

E. Fox And Dinner
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Fox Ciel is participating in a party in Prime Kingdom. There are n foxes there (include Fox Ciel). The i-th fox is ai years old.

They will have dinner around some round tables. You want to distribute foxes such that:

1. Each fox is sitting at some table.
2. Each table has at least 3 foxes sitting around it.
3. The sum of ages of any two adjacent foxes around each table should be a prime number.

If k foxes f1f2, ..., fk are sitting around table in clockwise order, then for 1 ≤ i ≤ k - 1fi and fi + 1 are adjacent, and f1 and fk are also adjacent.

If it is possible to distribute the foxes in the desired manner, find out a way to do that.

Input

The first line contains single integer n (3 ≤ n ≤ 200): the number of foxes in this party.

The second line contains n integers ai (2 ≤ ai ≤ 104).

Output

If it is impossible to do this, output "Impossible".

Otherwise, in the first line output an integer m (): the number of tables.

Then output m lines, each line should start with an integer k -=– the number of foxes around that table, and then k numbers — indices of fox sitting around that table in clockwise order.

If there are several possible arrangements, output any of them.

Sample test(s)
input
4
3 4 8 9

output
1
4 1 2 4 3

input
5
2 2 2 2 2

output
Impossible

input
12
2 3 4 5 6 7 8 9 10 11 12 13

output
1
12 1 2 3 6 5 12 9 8 7 10 11 4

input
24
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

output
3
6 1 2 3 6 5 4
10 7 8 9 12 15 14 13 16 11 10
8 17 18 23 22 19 20 21 24

Note

In example 1, they can sit around one table, their ages are: 3-8-9-4, adjacent sums are: 11, 17, 13 and 7, all those integers are primes.

In example 2, it is not possible: the sum of 2+2 = 4 is not a prime number.

#define INF			9000000000
#define EPS			(double)1e-9
#define mod			1000000007
#define PI			3.14159265358979
//*******************************************************************************/
#endif
#define N 205
#define M 100005
#define maxn 205
#define MOD 1000000000000000007
int n,pri[N],ansNum;
bool vis[N],prime[M];
vector<int> ans[N];
struct Edge{
int from,to,cap,flow;
Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};
struct EdmondsKarp{
int n,m;
vector<Edge> edges;//存边 边的两倍
vector<int> G[maxn];//邻接表，图
int a[maxn];//起点到i的可改进量
int p[maxn];//最短路入弧号
void init(int n){
FI(n) G[i].clear();
edges.clear();
}
void AddEdge(int from,int to,int cap){
edges.push_back(Edge(from,to,cap,0));
edges.push_back(Edge(to,from,0,0));//反向
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
int Maxflow(int s,int t){
int flow = 0;
for(;;){
memset(a,0,sizeof(a));
queue<int> Q;
Q.push(s);
a[s] = INF;
while(!Q.empty()){
int x = Q.front();Q.pop();
FI(G[x].size()){
Edge & e = edges[G[x][i]];
if(!a[e.to]&&e.cap > e.flow){
p[e.to] = G[x][i];
a[e.to] = min(a[x],e.cap - e.flow);
Q.push(e.to);
}
}
if(a[t]) break;
}
if(!a[t]) break;
for(int u = t;u !=s;u = edges[p[u]].from){
edges[p[u]].flow += a[t];
edges[p[u] ^ 1].flow -= a[t];
}
flow += a[t];
}
return flow;
}
};
EdmondsKarp Ek;
void InitPrime(){
memset(prime,true,sizeof(prime));
prime[0] = prime[1] = false;
for(int i=2;i<M;i++){
if(prime[i]){
for(int j=i+i;j<M;j+=i){
prime[j] = false;
}
}
}
}
void FindPath(int s,int isOdd,int ansi){
vis[s] = true;
ans[ansi].push_back(s);
for(int i=0;i<Ek.G[s].size();i++){
Edge e = Ek.edges[Ek.G[s][i]];
if(e.to != (n+1) && e.to != (n)&& !vis[e.to] && (e.cap == isOdd)&& (abs(e.flow) == 1)){
FindPath(e.to,isOdd ^ 1,ansi);
return ;
}
}
}
int main()
{
InitPrime();
while(S(n)!=EOF)
{
FI(n){
S(pri[i]);
}
Ek.init(n+2);
FI(n){
if(pri[i] & 1)
else
for(int j=0;j<n;j++){
if( j != i && (pri[i] & 1) && prime[pri[i] + pri[j]])
}
}
Ek.Maxflow(n,n+1);
bool flag = true;
for(int i=0;i<Ek.G[n].size() && flag;i++){
Edge e = Ek.edges[Ek.G[n][i]];
if(e.cap && abs(e.flow) != 2){
flag = false;
}
}
for(int i=0;i<Ek.G[n+1].size() && flag;i++){
Edge e = Ek.edges[Ek.G[n+1][i]];
if(!e.cap && abs(e.flow) != 2){
flag = false;
}
}
if(flag){
ansNum = 0;
memset(vis,false,sizeof(vis));
for(int i=0;i<Ek.G[n].size();i++){
Edge e = Ek.edges[Ek.G[n][i]];
if(!vis[e.to]){
ans[ansNum].clear();
FindPath(e.to,1,ansNum);
if(ans[ansNum].size()<=2){
ansNum = 0;
break;
}
ansNum++;
}
}
if(ansNum == 0){
printf("Impossible\n");
continue;
}
printf("%d\n",ansNum);
FI(ansNum){
printf("%d",ans[i].size());
FJ(ans[i].size()){
printf(" %d",ans[i][j]+1);
}
printf("\n");
}
}
else {
printf("Impossible\n");
}
}
return 0;
}


Dinic 算法实现最大流
#define INF			9000000000
#define EPS			(double)1e-9
#define mod			1000000007
#define PI			3.14159265358979
//*******************************************************************************/
#endif
#define N 205
#define M 100005
#define maxn 205
#define MOD 1000000000000000007
int n,pri[N],ansNum;
bool vis[N],prime[M];
vector<int> ans[N];
struct Edge{
int from,to,cap,flow;
Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};
struct EdmondsKarp{
int n,m;
vector<Edge> edges;//存边 边的两倍
vector<int> G[maxn];//邻接表，图
int a[maxn];//起点到i的可改进量
int p[maxn];//最短路入弧号
void init(int n){
FI(n) G[i].clear();
edges.clear();
}
void AddEdge(int from,int to,int cap){
edges.push_back(Edge(from,to,cap,0));
edges.push_back(Edge(to,from,0,0));//反向
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
int Maxflow(int s,int t){
int flow = 0;
for(;;){
memset(a,0,sizeof(a));
queue<int> Q;
Q.push(s);
a[s] = INF;
while(!Q.empty()){
int x = Q.front();Q.pop();
FI(G[x].size()){
Edge & e = edges[G[x][i]];
if(!a[e.to]&&e.cap > e.flow){
p[e.to] = G[x][i];
a[e.to] = min(a[x],e.cap - e.flow);
Q.push(e.to);
}
}
if(a[t]) break;
}
if(!a[t]) break;
for(int u = t;u !=s;u = edges[p[u]].from){
edges[p[u]].flow += a[t];
edges[p[u] ^ 1].flow -= a[t];
}
flow += a[t];
}
return flow;
}
};
struct Dinic{
int n,m,s,t;
vector<Edge> edges;//存边 边的两倍
vector<int> G[maxn];//邻接表，图
bool vis[maxn];//BFS使用
int d[maxn];//起点到i的距离
int cur[maxn];//当前弧下标
void init(int n){
FI(n) G[i].clear();
edges.clear();
}
void AddEdge(int from,int to,int cap){
edges.push_back(Edge(from,to,cap,0));
edges.push_back(Edge(to,from,0,0));//反向
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool BFS(){
memset(vis,0,sizeof(vis));
queue<int> Q;
Q.push(s);
d[s] = 0;
vis[s] = 1;
while(!Q.empty()){
int x = Q.front();Q.pop();
for(int i=0;i<G[x].size();i++){
Edge & e  = edges[G[x][i]];
if(!vis[e.to] && e.cap > e.flow){
vis[e.to] = 1;
d[e.to] = d[x] + 1;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x,int a){
if(x == t || a== 0) return a;
int flow = 0,f;
for(int  i= cur[x];i<G[x].size();i++){
Edge & e = edges[G[x][i]];
if(d[x] + 1 == d[e.to] && ( f= DFS(e.to,min(a,e.cap - e.flow)))>0){
e.flow += f;
edges[G[x][i]^1].flow -= f;
flow += f;
a -= f;
if( a== 0)break;
}
}
return flow;
}
int Maxflow(int s,int t){
this->s = s;this-> t = t;
int flow = 0;
while(BFS()){
memset(cur,0,sizeof(cur));
flow += DFS(s,INF);
}
return flow;
}
};
//EdmondsKarp Ek;
Dinic Ek;
void InitPrime(){
memset(prime,true,sizeof(prime));
prime[0] = prime[1] = false;
for(int i=2;i<M;i++){
if(prime[i]){
for(int j=i+i;j<M;j+=i){
prime[j] = false;
}
}
}
}
void FindPath(int s,int isOdd,int ansi){
vis[s] = true;
ans[ansi].push_back(s);
for(int i=0;i<Ek.G[s].size();i++){
Edge e = Ek.edges[Ek.G[s][i]];
if(e.to != (n+1) && e.to != (n)&& !vis[e.to] && (e.cap == isOdd)&& (abs(e.flow) == 1)){
FindPath(e.to,isOdd ^ 1,ansi);
return ;
}
}
}
int main()
{
InitPrime();
while(S(n)!=EOF)
{
FI(n){
S(pri[i]);
}
Ek.init(n+2);
FI(n){
if(pri[i] & 1)
else
for(int j=0;j<n;j++){
if( j != i && (pri[i] & 1) && prime[pri[i] + pri[j]])
}
}
Ek.Maxflow(n,n+1);
bool flag = true;
for(int i=0;i<Ek.G[n].size() && flag;i++){
Edge e = Ek.edges[Ek.G[n][i]];
if(e.cap && abs(e.flow) != 2){
flag = false;
}
}
for(int i=0;i<Ek.G[n+1].size() && flag;i++){
Edge e = Ek.edges[Ek.G[n+1][i]];
if(!e.cap && abs(e.flow) != 2){
flag = false;
}
}
if(flag){
ansNum = 0;
memset(vis,false,sizeof(vis));
for(int i=0;i<Ek.G[n].size();i++){
Edge e = Ek.edges[Ek.G[n][i]];
if(!vis[e.to]){
ans[ansNum].clear();
FindPath(e.to,1,ansNum);
if(ans[ansNum].size()<=2){
ansNum = 0;
break;
}
ansNum++;
}
}
if(ansNum == 0){
printf("Impossible\n");
continue;
}
printf("%d\n",ansNum);
FI(ansNum){
printf("%d",ans[i].size());
FJ(ans[i].size()){
printf(" %d",ans[i][j]+1);
}
printf("\n");
}
}
else {
printf("Impossible\n");
}
}
return 0;
}


• 本文已收录于以下专栏：

## Codeforces 510 E Fox And Dinner【预处理素数+建图+最大流Dinic】好题

E. Fox And Dinner time limit per test 2 seconds memory limit per test 256 megabytes input...

## Codeforces Round #304 (Div. 2)E. Soldier and Traveling 网络流

http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1442题意：n个城市，m条边， 每个点刚开始有ai个人，问最后能不能有bi...
• yp_2013
• 2016年02月24日 21:12
• 156

## Codeforces Round #290(Div.2) B.Fox And Two Dots

B. Fox And Two Dots time limit per test 2 seconds memory limit per test 256 megabytes input st...

## Codeforces Round #290 (Div. 2) C. Fox And Names 拓扑排序

• ww32zz
• 2015年08月03日 15:28
• 288

## 【Codeforces Round 375 (Div 2) E】【欧拉回路Fleury算法 或网络流】One-Way Reform 每条边定向使得最多的点满足入度=出度

E. One-Way Reform time limit per test 2 seconds memory limit per test 256 megabytes ...

举报原因： 您举报文章：Codeforces Round #290 (Div. 2) E. Fox And Dinner 网络流 最大流 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)