一、背景
统计语言模型工具有比较多的选择,目前使用比较好的有srilm及kenlm,其中kenlm比srilm晚出来,训练速度也更快,而且支持单机大数据的训练。现在介绍一下kenlm的使用方法。
二、使用kenlm训练 n-gram
1.工具主页:http://kheafield.com/code/kenlm/
2.工具包的下载地址:http://kheafield.com/code/kenlm.tar.gz
3.使用。该工具在linux环境下使用方便,windows下使用需要用cygwin 64模拟linux环境使用。 先确保linux环境已经按照1.36.0的Boost和zlib,
boost:
yum install boost
yum install boost-devel
zlib:
yum install zlib
yum install zlib-devel
然后gcc版本需要是4.8.2及以上。kenlm.tar.gz工具包下载,解压,进入子目录运行 ./bjam 进行编译。
也可以参考官方编译方法:
wget -O - https://kheafield.com/code/kenlm.tar.gz |tar xz
mkdir kenlm/build
cd kenlm/build
cmake ..
make -j2
4.训练。使用如下命令进行训练:
build/bin/lmplz -o 3 --verbose_header --text people2014corpus_words.txt --arpa result/people2014corpus_words.arps
其中,
1)people2014corpus_words.txt文件必须是分词以后的文件。
2)-o后面的5表示的是5-gram,一般取到3即可,但可以结合自己实际情况判断。
5.压缩。压缩模型为二进制,方便模型快速加载:
build/bin/build_binary ./result/people2014corpus_words.arps ./result/people2014corpus_words.klm
本文介绍如何使用kenlm工具训练n-gram语言模型,包括环境配置、编译安装及训练过程。kenlm是一款高效的统计语言模型工具,支持单机大数据训练。
6771

被折叠的 条评论
为什么被折叠?



