排序:
默认
按更新时间
按访问量

【论文笔记06】Memory Network

1 问题和解决办法 (1)问题 当遇到有若干个句子并且句子之间有联系的时候,RNN和LSTM就不能很好地解决; 对于句子间的这种长期依赖,于是需要从记忆中提取信息; (2)解决办法 本文提出了实现长期记忆的框架,实现了如何从长期记忆中读取和写入,此外还加入了推理功能; 在QA问题中,长期记...

2018-11-02 16:59:22

阅读数:22

评论数:0

【论文笔记05】WORDS OR CHARACTERS? FINE-GRAINED GATING FOR READING COMPREHENSION

1 问题和数据集 1.1 问题 这是一篇以阅读理解为任务的文章,但在具体处理这个任务时,主要解决数据特征等的表示问题。在提取文本特征时,通常只对单词做词嵌入,而忽略了字符级的特征。 1.2 数据集 CBT WDW SQuAD 2 目前已有方法 2.1 单词级表示 (1)from a ...

2018-10-22 20:03:33

阅读数:24

评论数:0

【论文笔记04】TriviaQA_A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension

1 论文主要内容 本文是一篇资源论文,主要发布了用于检索式问答或阅读理解的数据集Trivia QA; 对该数据集的质量和数量进行了分析,并创建了baseline,用于具体评估数据集的质量。 2 Trivia QA数据集的特点 问题比较复杂 在问题和相应的答案句子中有大量的句法或词汇变化 ...

2018-10-22 15:47:35

阅读数:12

评论数:0

深度学习中的注意力机制

最近读到论文《Attention Is All You Need》,在网上也查了很多资料,然后又对这篇论文重新理解了下,收获颇多。在这过程中,发现一篇很好的文章,来自张俊林博士的深度学习中的注意力机制(2017版)。强烈推荐,难得的好文。如果要想理解注意力机制的思想,看这篇文章绝对够了。 原链接:...

2018-10-18 19:21:59

阅读数:81

评论数:0

tensorflow中sequence_loss_by_example()函数的计算过程(结合TF的ptb构建语言模型例子)

1 softmax 2 交叉熵

2018-10-15 20:18:30

阅读数:117

评论数:0

一文搞懂交叉熵在机器学习中的使用,透彻理解交叉熵背后的直觉

本文转自:https://blog.csdn.net/tsyccnh/article/details/79163834 原作者:史丹利复合田 关于交叉熵在loss函数中使用的理解 交叉熵(cross entropy)是深度学习中常用的一个概念,一般用来...

2018-10-14 15:56:24

阅读数:8

评论数:0

【论文笔记03】ReasoNet: Learning to Stop Reading in Machine Comprehension

1 问题及数据集 1.1 问题 本论文主要解决一种面向Cloze-style(填空式)的阅读理解(问答)问题 1.2 数据集 (1)CNN&Daily Mail (2)SQuAD (3)Graph Reachability datase 2 已有方法 2.1 单轮...

2018-10-13 20:27:03

阅读数:40

评论数:0

【论文笔记02】Text Understanding with the Attention Sum Reader Network

1 问题及数据集 1.1 问题 给定较长一段话的context和一个较短的问题,以及一些candidate answers,训练出可以准确预测正确答案的模型,本模型主要针对命名实体和常用名词这两种词性的单词进行填空。 1.2数据集 (1)CNN&Daily ...

2018-10-13 09:37:05

阅读数:5

评论数:0

【论文笔记01】Phrase-Based & Neural Unsupervised Machine Translation

这篇论文来源于EMNLP2018,论文地址,这次采用了思维导图的方式记录笔记,思维导图的缩略图如下: 缩略图有些模糊,于是我上传服务器了,可以直接点击查看。导图地址 ...

2018-10-08 20:05:54

阅读数:76

评论数:0

從零開始的 Sequence to Sequence

前段时间研究了下seq2seq,在网上查了写资料,但这些资料大都相同,要么就论文中的几个创新点来谈,要么就keras或者tensorflow提供的seq2seq例子来简单介绍下。很少有文章讲清楚了是怎么训练的,怎么预测的,后来翻到了一位同学的个人博客,他从RNN到LSTM再到seq2seq都讲得非...

2018-10-04 16:14:48

阅读数:26

评论数:0

【论文翻译&笔记01】How Much Reading Does Reading Comprehension Require?

0 Abstract 最近的许多论文都涉及到阅读理解,他们一般都包括(问题,段落,答案)元组。或许,一个模型必须综合问题和段落两者的信息来预测相应的答案。然而,尽管人们对这个话题产生了浓厚的兴趣,数百篇已发表的论文争夺排行榜的主导地位,但关于许多流行基准测试难度的基本问题仍未得到解答。在这篇论文...

2018-10-01 11:05:32

阅读数:40

评论数:0

一种最原始的混沌神经元构造过程

title: 一种最原始的混沌神经元构造过程 date: 2018年9月25日13:55:30 thumbnail: https://raw.githubusercontent.com/xiongzongyang/hexo_photo/master/ch.jpg tags: - 笔记 ...

2018-09-25 13:56:21

阅读数:18

评论数:0

利用sklearn实现多分类demo

title: 利用sklearn实现多分类demo date: 2018-9-3 19:30:38 thumbnail: https://raw.githubusercontent.com/xiongzongyang/hexo_photo/master/iris.png tags: ...

2018-09-03 19:37:27

阅读数:78

评论数:0

DataFrame的索引选项

经常用到DataFrame的索引切片,而且容易搞混,所以将《利用python进行数据分析》中的相关总结贴出来

2018-08-30 16:44:21

阅读数:47

评论数:0

Keras examples-imdb_cnn[利用卷积网络对文本分类]

1 任务描述 本实验室利用卷积神经网络对imdb数据进行文本分类 2 实验过程 (1)引入实验中所涉及到的包 数据集包、数据预处理包、网络模型包、网络各层结构所对应的包 from __future__ import print_function from keras.prepr...

2018-08-28 17:21:13

阅读数:136

评论数:0

Keras中加载预训练的词向量

经常需要加载预训练的词向量,有时候会脑抽忘记,所以记录下。 vocab={} # 词汇表为数据预处理后得到的词汇字典 # 构建词向量索引字典 ## 读入词向量文件,文件中的每一行的第一个变量是单词,后面的一串数字对应这个词的词向量 glove_dir="./d...

2018-08-27 18:25:48

阅读数:405

评论数:0

利用nltk可视化stanford coreNLP构建的中文句法树

在stanford coreNLP的网页中直接以树的形式可视化了解析结果。但在IDE中,利用python调用coreNLP server后返回的是字符串格式。这是可以利用nltk中的Tree类来可视化解析结果。代码如下: from nltk.tree import Tree from stanf...

2018-08-22 21:58:58

阅读数:399

评论数:0

两种在Python中使用Stanford CoreNLP的方法

这两种方法都需要提前下载CoreNLP最新的压缩包,再下载对应的语言jar包。从CoreNLP下载页面下载。将压缩包解压得到目录,再将语言的jar包放到这个目录下即可。并且要求java -version>=1.8。 接下来就是利用python对该工具的使用进行一个封装,这里...

2018-08-22 11:20:37

阅读数:605

评论数:2

ROC原理介绍及利用python实现二分类和多分类的ROC曲线

对于分类器,或者说分类算法,评价指标主要有precision,recall,F-score1,以及即将要讨论的ROC和AUC。本文通过对这些指标的原理做一个简单的介绍,然后用python分别实现二分类和多分类的ROC曲线。 1 基本概念 一个分类模型(分类器)是一个将某个实例映射到一...

2018-08-19 16:48:41

阅读数:918

评论数:0

Keras examples-imdb_bidirectional_lstm[利用Bi-LSTM实现情感分类]

1 任务描述 本实验是训练一个双向LSTM,并在IMDB数据集上完成情感分类任务 2 具体实现 (1)引入必要的包 from __future__ import print_function import numpy as np from keras.preprocessing ...

2018-08-16 16:24:05

阅读数:161

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭