visdom无法正常使用、只有蓝屏

如果出现蓝屏情况,说明服务是能够正常启动的,只是前端页面显示有问题,这些前端页面一般要翻墙才能下载,所以只要下载这些文件放进去就可以了。点我下载文件 正常运行结果: 下载后直接替换static文件即可,static目录下的文件情况如下: css目录下的文件情况如下: fonts目录下文件情况...

2018-12-19 21:32:46

阅读数:116

评论数:0

【论文笔记11】TRACKING THE WORLD STATE WITH RECURRENT ENTITY NETWORKS

这个模型也就是前面提到的动态记忆,这篇论文来自ICLR2017,论文比笔记还是参考了北邮的两位大佬的博客,后面给出了原博客地址。 论文提出了一种新的动态记忆网络,使用固定长度的记忆单元来存储世界上的实体,每个记忆单元对应一个实体,主要存储该实体相关的属性(如一个人拿了什么东西,在哪里,跟谁等等),...

2018-12-12 17:29:12

阅读数:18

评论数:0

【论文笔记10】Key-Value Memory Networks for Directly Reading Documents

上个月看了Facebook的记忆网络系列,前面的两篇论文的笔记看完就整理了,后面这几篇就耽误了,最近又看了一遍,于是及时整理,不然又忘了。这篇文章主要参考北邮的两位大佬(北邮张博、知乎-呜呜哈)的文章,这两个大佬是真的厉害Orz,他们的文章我在最后面贴出了链接。为了自己更好的理解,部分地方我进行了...

2018-12-12 16:31:15

阅读数:33

评论数:0

【论文笔记09】Teaching Machines to Read and Comprehend

本文主要做出了两个大的贡献: 给出了阅读理解数据集的构造方法,并开源了两个阅读理解数据集; 提出了三种神经网络模型作为baseline,以方便后面的研究者进行相关的研究。 1 数据构造 主要是从新闻网站中抓取新闻作为文章,新闻的摘要去掉一个实体词成为query,被去掉的单词作为答案。为了防止模...

2018-11-19 20:10:27

阅读数:18

评论数:0

【论文笔记08】Dynamic Entity Representation with Max-pooling Improves Machine Reading

本文模型之前的模型都是用一个静态的向量来表示一个entity,与上下文没有关系。而本文最大的贡献在于提出了一种动态表示entity的模型,根据不同的上下文对同样的entity有不同的表示。 模型还是采用双向LSTM来构建,这时实体表示由四部分构成,包括两个方向上的隐层状态,,以及该实体所在句子的最...

2018-11-17 21:25:44

阅读数:33

评论数:0

【论文笔记07】End-To-End Memory Networks

1 背景 (1)在记忆网络中,主要由4个模块组成:I、G、O、R,前面也提到I和G模块其实并没有进行多复杂的操作,只是将原始文本进行向量表示后直接存储在记忆槽中。而主要工作集中在O和R模块,O用来选择与问题相关的记忆,R用来回答,而这两部分都需要监督,也就是需要知道O模块中选择的记忆是否正确,R生...

2018-11-17 20:30:59

阅读数:22

评论数:0

【论文笔记06】Memory Network

1 问题和解决办法 (1)问题 当遇到有若干个句子并且句子之间有联系的时候,RNN和LSTM就不能很好地解决; 对于句子间的这种长期依赖,于是需要从记忆中提取信息; (2)解决办法 本文提出了实现长期记忆的框架,实现了如何从长期记忆中读取和写入,此外还加入了推理功能; 在QA问题中,长期记...

2018-11-02 16:59:22

阅读数:43

评论数:0

【论文笔记05】WORDS OR CHARACTERS? FINE-GRAINED GATING FOR READING COMPREHENSION

1 问题和数据集 1.1 问题 这是一篇以阅读理解为任务的文章,但在具体处理这个任务时,主要解决数据特征等的表示问题。在提取文本特征时,通常只对单词做词嵌入,而忽略了字符级的特征。 1.2 数据集 CBT WDW SQuAD 2 目前已有方法 2.1 单词级表示 (1)from a ...

2018-10-22 20:03:33

阅读数:78

评论数:0

【论文笔记04】TriviaQA_A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension

1 论文主要内容 本文是一篇资源论文,主要发布了用于检索式问答或阅读理解的数据集Trivia QA; 对该数据集的质量和数量进行了分析,并创建了baseline,用于具体评估数据集的质量。 2 Trivia QA数据集的特点 问题比较复杂 在问题和相应的答案句子中有大量的句法或词汇变化 ...

2018-10-22 15:47:35

阅读数:54

评论数:0

深度学习中的注意力机制

最近读到论文《Attention Is All You Need》,在网上也查了很多资料,然后又对这篇论文重新理解了下,收获颇多。在这过程中,发现一篇很好的文章,来自张俊林博士的深度学习中的注意力机制(2017版)。强烈推荐,难得的好文。如果要想理解注意力机制的思想,看这篇文章绝对够了。 原链接:...

2018-10-18 19:21:59

阅读数:128

评论数:0

tensorflow中sequence_loss_by_example()函数的计算过程(结合TF的ptb构建语言模型例子)

1 softmax 2 交叉熵

2018-10-15 20:18:30

阅读数:762

评论数:0

一文搞懂交叉熵在机器学习中的使用,透彻理解交叉熵背后的直觉

本文转自:https://blog.csdn.net/tsyccnh/article/details/79163834 原作者:史丹利复合田 关于交叉熵在loss函数中使用的理解 交叉熵(cross entropy)是深度学习中常用的一个概念,一般用来...

2018-10-14 15:56:24

阅读数:31

评论数:0

【论文笔记03】ReasoNet: Learning to Stop Reading in Machine Comprehension

1 问题及数据集 1.1 问题 本论文主要解决一种面向Cloze-style(填空式)的阅读理解(问答)问题 1.2 数据集 (1)CNN&Daily Mail (2)SQuAD (3)Graph Reachability datase 2 已有方法 2.1 单轮...

2018-10-13 20:27:03

阅读数:186

评论数:2

【论文笔记02】Text Understanding with the Attention Sum Reader Network

1 问题及数据集 1.1 问题 给定较长一段话的context和一个较短的问题,以及一些candidate answers,训练出可以准确预测正确答案的模型,本模型主要针对命名实体和常用名词这两种词性的单词进行填空。 1.2数据集 (1)CNN&Daily ...

2018-10-13 09:37:05

阅读数:22

评论数:0

【论文笔记01】Phrase-Based & Neural Unsupervised Machine Translation

这篇论文来源于EMNLP2018,论文地址,这次采用了思维导图的方式记录笔记,思维导图的缩略图如下: 缩略图有些模糊,于是我上传服务器了,可以直接点击查看。导图地址 ...

2018-10-08 20:05:54

阅读数:281

评论数:0

從零開始的 Sequence to Sequence

前段时间研究了下seq2seq,在网上查了写资料,但这些资料大都相同,要么就论文中的几个创新点来谈,要么就keras或者tensorflow提供的seq2seq例子来简单介绍下。很少有文章讲清楚了是怎么训练的,怎么预测的,后来翻到了一位同学的个人博客,他从RNN到LSTM再到seq2seq都讲得非...

2018-10-04 16:14:48

阅读数:37

评论数:0

【论文翻译&笔记01】How Much Reading Does Reading Comprehension Require?

0 Abstract 最近的许多论文都涉及到阅读理解,他们一般都包括(问题,段落,答案)元组。或许,一个模型必须综合问题和段落两者的信息来预测相应的答案。然而,尽管人们对这个话题产生了浓厚的兴趣,数百篇已发表的论文争夺排行榜的主导地位,但关于许多流行基准测试难度的基本问题仍未得到解答。在这篇论文...

2018-10-01 11:05:32

阅读数:85

评论数:0

一种最原始的混沌神经元构造过程

title: 一种最原始的混沌神经元构造过程 date: 2018年9月25日13:55:30 thumbnail: https://raw.githubusercontent.com/xiongzongyang/hexo_photo/master/ch.jpg tags: - 笔记 ...

2018-09-25 13:56:21

阅读数:37

评论数:0

利用sklearn实现多分类demo

title: 利用sklearn实现多分类demo date: 2018-9-3 19:30:38 thumbnail: https://raw.githubusercontent.com/xiongzongyang/hexo_photo/master/iris.png tags: ...

2018-09-03 19:37:27

阅读数:471

评论数:0

DataFrame的索引选项

经常用到DataFrame的索引切片,而且容易搞混,所以将《利用python进行数据分析》中的相关总结贴出来

2018-08-30 16:44:21

阅读数:125

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭