scikit-learn:3.3. Model evaluation: quantifying the quality of predictions

参考:http://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter


三种方法评估模型的预测质量:

最后介绍 Dummy estimators ,提供随机猜测的策略,可以作为预测质量评价的baseline。(参考第六小节)

See also

 

For “pairwise” metrics, between samples and not estimators or predictions, see the Pairwise metrics, Affinities and Kernels section.



具体内容有时间再写。。。



1、

The  scoring parameter: defining model evaluation rules

Model selection and evaluation using tools, such as grid_search.GridSearchCV and cross_validation.cross_val_score, take a scoring parameter that controls what metric they apply to the estimators evaluated.

1)预定义的标准

所有的scorer都是越大越好,因此mean_absolute_error and mean_squared_error(测量预测点离模型的距离)是负值。

Scoring Function Comment
Classification    
‘accuracy’ metrics.accuracy_score  
‘average_precision’ metrics.average_precision_score  
‘f1’ metrics.f1_score for binary targets
‘f1_micro’ metrics.f1_score micro-averaged
‘f1_macro’ metrics.f1_score macro-averaged
‘f1_weighted’ metrics.f1_score weighted average
‘f1_samples’ metrics.f1_score by multilabel sample
‘log_loss’ metrics.log_loss requires predict_proba support
‘precision’ etc. metrics.precision_score suffixes apply as with ‘f1’
‘recall’ etc. metrics.recall_score suffixes apply as with ‘f1’
‘roc_auc’ metrics.roc_auc_score  
Clustering    
‘adjusted_rand_score’ metrics.adjusted_rand_score  
Regression    
‘mean_absolute_error’ metrics.mean_absolute_error  
‘mean_squared_error’ metrics.mean_squared_error  
‘median_absolute_error’ metrics.median_absolute_error  
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值