向量的叉积...

它可以用来判断点在直线的某侧。进而可以解决点是否在三角形内,两个矩形是否重叠等问题。向量的叉积的模表示这两个向量围成的平行四边形的面积。  
    设矢量P = ( x1, y1 ),Q = ( x2, y2 ),则矢量叉积定义为由(0,0)、p1、p2和p1+p2所组成的平行四边形的带符号的面积,即:P×Q = x1*y2 - x2*y1,其结果是一个伪矢量。   
    显然有性质 P × Q = - ( Q × P ) 和 P × ( - Q ) = - ( P × Q )。   
叉积的一个非常重要性质是可以通过它的符号判断两矢量相互之间的顺逆时针关系:   
若 P × Q > 0 , 则P在Q的顺时针方向。    
若 P × Q < 0 , 则P在Q的逆时针方向。     
若 P × Q = 0 , 则P与Q共线,但可能同向也可能反向。     
叉积的方向与进行叉积的两个向量都垂直,所以叉积向量即为这两个向量构成平面的法向量。   
如果向量叉积为零向量,那么这两个向量是平行关系。    

因为向量叉积是这两个向量平面的法向量,如果两个向量平行无法形成一个平面,其对应也没有平面法向量。所以,两个向量平行时,其向量叉积为零。

### 如何计算速度向量与角速度向量 对于两个三维向量 \(\vec{v}\) 和 \(\vec{\omega}\),其可以按照如下方式定义: 设速度向量为 \(\vec{v} = (v_x, v_y, v_z)\),角速度向量为 \(\vec{\omega} = (\omega_x, \omega_y, \omega_z)\),那么这两个向量结果是一个新的向量 \(\vec{r} = (r_x, r_y, r_z)\),其中各个分量可以通过下面公式得出[^1]。 \[ r_x = v_y \cdot \omega_z - v_z \cdot \omega_y \\ r_y = v_z \cdot \omega_x - v_x \cdot \omega_z \\ r_z = v_x \cdot \omega_y - v_y \cdot \omega_x \] 此新产生的向量 \(\vec{r}\) 的方向遵循右手定则,即如果手指从第一个操作数(这里指速度向量)弯曲至第二个操作数(这里是角速度向量),那么大拇指所指示的方向便是所得向量的方向。该向量不仅代表了由原两向量决定平面内的法线方向,而且它的长度等于这两者组成的平行四边形面大小。 在实际编程实现时,可以用以下 Python 代码来完成上述运算过程: ```python def cross_product(v, omega): vx, vy, vz = v wx, wy, wz = omega rx = vy * wz - vz * wy ry = vz * wx - vx * wz rz = vx * wy - vy * wx return (rx, ry, rz) # 假设有给定的速度向量和角速度向量 velocity_vector = (vx_value, vy_value, vz_value) angular_velocity_vector = (wx_value, wy_value, wz_value) resultant_vector = cross_product(velocity_vector, angular_velocity_vector) print(f"The resultant vector is {resultant_vector}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值