GKStateMaching

游戏开发状态机详解
本文详细介绍了Gameplaykit框架中的GKStateMachine,一种用于管理游戏内不同状态转换的有限状态机系统。它允许开发者定义复杂的行为模式,如敌人的追逐、逃跑等状态,并通过状态之间的平滑过渡提供流畅的游戏体验。

GKStateMaching

一个有限状态机集合,包含有特定逻辑和规则去处理逻辑间的过渡。

概括

在Gameplaykit框架中,GKState的子类定义了每一种状态和状态间过渡的规则,使用了GKStateMachine实例可以去集中管理每一个独立的状态。这个状态机系统提供了方法,可以规划安排那些状态依赖的行为,当进入某个状态时,离开某个状态时,或者周期性实现某个状态逻辑(例如不同状态播放不同帧动画)。

你可以用GKStateMachine来控制各种类型的游戏,比如:

• 一个敌人角色可能会使用状态机拥有追逐,逃跑,死亡或者重生的状态,每一种状态控制一种行为,每种状态的过渡由玩家的行为改变或者时间的流逝所改变。

• 使用状态机来控制游戏的菜单开始,暂停,失败等状态,其中每个决定哪些UI元素显示和其他游戏元素运行。

构建一个状态机GKStateMachine,首先要定义明确的GKState状态子类来构建每一种可能发生的状态,在每个状态类中isValidNextState: 方法决定了哪些状态可以进行过渡。然后,通过构造GKState状态类的实例并将它们传递给创建状态机中列出的方法之一,创建一个状态机对象。最后设置一个motion来选择一个最初的状态,使用enterState:
 方法进行设置。

定义状态依赖的行为,在每一个GKState子类中重写didEnterWithPreviousState: 方法,updateWithDeltaTime: 方法和willExitWithNextState: 方法。

• 状态机会在一个状态改变时通知当前GKState实例,使用didEnterWithPreviousState: 和willExitWithNextState: 方法在状态改变时执行行为。例如,进入“逃离状态”的敌方人物可能会改变其外观,以表示被玩家工具。

• 当你使用一个状态的updateWithDeltaTime:  方法时,状态机也会对当前状态的updateWithDeltaTime:  发送消息,使用这个方法更新每一帧的代码。例如,追击状态中的敌方人物可以更新其位置以追击玩家,逃离状态的敌人可以更新其位置以躲避玩家。

Topics

创建状态机(Creating a State Machine)

- initWithStates:
通过特定的状态数组创建状态机。

+ stateMachineWithStates:

通过特定的状态数组创建状态机。

与状态相关的方法(Working with States)

currentState

状态机中当前的状态。

- canEnterState:

返回一个布尔值,判断是否能是一个有效状态可以过渡。

- enterState:

状态机尝试从当前状态过渡到指定状态。

- stateForClass:

通过指定类型返回相对应的状态。

- updateWithDeltaTime:

当前状态对象调用的updateWithDeltaTime: 方法。

关系

继承

NSObject



【无线传感器】使用 MATLAB和 XBee连续监控温度传感器无线网络研究(Matlab代码实现)内容概要:本文档围绕“使用 MATLAB 和 XBee 连续监控温度传感器无线网络”的研究主题,介绍了基于 MATLAB 编程与 XBee 无线通信模块相结合的无线传感网络构建与实时温度监控系统实现方法。文中详细阐述了系统架构设计、XBee 模块的组网与配置、MATLAB 数据采集与可视化流程,并通过实际代码展示了如何实现传感器数据的无线传输、接收解析及动态图表显示,从而完成对温度变化的连续监测。该研究突出了 MATLAB 在数据处理与图形展示方面的优势,以及 XBee 在低功耗、可靠通信中的应用价值。; 适合人群:具备一定 MATLAB 编程基础和通信原理知识的本科生、研究生及从事物联网系统开发的初级工程师;适用于电子信息、自动化、计算机等相关专业的科研与课程设计实践。; 使用场景及目标:①实现无线传感器网络的数据采集与远程监控;②学习 MATLAB 与硬件模块(如 XBee)的串口通信编程;③掌握无线传感系统的设计与调试流程,为环境监测、工业测温等应用场景提供技术参考。; 阅读建议:建议读者结合文中提供的 MATLAB 代码与硬件连接示意图进行仿真与实物验证,重点关注串口通信参数设置、数据帧解析逻辑及实时绘图实现方式,以加深对系统整体工作流程的理解。
基于动态规划的微电网动态经济调度研究(Matlab代码实现)内容概要:本文围绕“基于动态规划的微电网动态经济调度研究”展开,结合Matlab代码实现,探讨了微电网在多约束条件下的优化调度问题。研究利用动态规划方法对微电网内部的分布式电源、储能系统及负荷进行协调优化,旨在降低运行成本、提高能源利用效率,并兼顾系统可靠性与环保性。文中详细介绍了模型构建过程、目标函数设计、约束条件设定及算法实现流程,并通过Matlab仿真验证了该方法的有效性与实用性。此外,文档还列举了大量相关研究主题与代码资源,涵盖电力系统优化、智能算法应用、新能源调度等多个方向,为后续研究提供了丰富参考。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的高校研究生、科研人员及从事能源优化调度相关工作的工程技术人员。; 使用场景及目标:①掌握动态规划在微电网经济调度中的建模与求解方法;②学习Matlab在电力系统优化中的实际编程实现技巧;③为开展微电网、综合能源系统等领域的科研项目提供算法支持与案例参考。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,深入理解动态规划算法的实现细节,并可进一步扩展至多目标优化、不确定性建模等更复杂场景,提升科研创新能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值