GKMersenneTwisterRandomSource

介绍了GKMersenneTwisterRandomSource类,它实现了MersenneTwister算法来生成高质量的伪随机数。该类适用于创建确定性的游戏机制,但不适用于加密目的。可以通过GKRandom协议的方法生成基本随机值,或与GKRandomDistribution类结合使用生成特定分布的随机值。

GKMersenneTwisterRandomSource

一个实现Mersenne Twister算法的随机数发生器,随机数多余默认的随机数发生器,但是运行更慢。

概括

重要

GameplayKit中提供的随机化服务适用于可靠地创建确定性的伪随机游戏机制,但不具备加密性。对于加密,混淆或密码使用,请使用描述“加密指南”的Security框架。

要使用此随机源生成基本随机值,请使用GKRandom协议中定义的方法。要生成具有特定范围和分布的随机值,请使用该随机源与GKRandomDistribution类或其子类之一。

当你创建此类的实例时,生成的随机源是独立的和确定性的,也就是说,一个实例生成的数字序列对任何其他实例生成的序列没有影响,并且该序列可以在必要时复制。有关复制序列的详细信息,请参阅seed属性和initWithSeed: 初始化方法。

Mersenne Twister随机源使用原始的松本和西村在2000年基于Mersenne主要功率19937描述的算法的通用64位变体。因此该随机源与该算法的其他实现兼容,包括mt19937_64类型 C ++ 11中的std :: mersenne_twister_engine模板。 也就是说,如果您使用相同的种子值初始化GKMersenneTwisterRandomSource实例和兼容实现,则两者都生成相同的数字序列。

Topics

创建随机源(Creating a Random Source)

- init
从非确定性种子初始化随机源。
- initWithSeed:
使用指定的种子数据初始化一个随机源。

复制随机行为(Replicating Random Behavior)

seed
确定随机来源行为的种子数据。

关系

继承

GKRandomSource


内容概要:本文围绕自适应可变速任务(AVR任务)的响应时间分析展开,提出通过构建速度-相位图,直观展示任务起始速度与结束速度之间的关系,从而有效减少潜在最坏情况组合的数量,提升实时系统调度分析的效率。文中结合Matlab代码实现,提供了具体的技术路径和仿真验证方法,适用于复杂实时环境中任务调度的性能优化。此外,文档还列举了大量相关科研方向的Matlab/Simulink仿真资源,涵盖电力系统、状态估计、路径规划、机器学习、信号处理等多个领域,形成综合性技术支撑体系。; 适合人群:具备Matlab编程基础,从事实时系统、嵌入式调度、自动化控制或相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①优化实时系统中可变速任务的响应时间分析;②借助速度-相【自适应可变速任务(AVR 任务)的响应时间分析】通过引入速度-相位图给出的起始和结束速度之间关系的直观视图,来减少潜在最坏情况组合的数量(Matlab代码实现)位图降低最坏情况组合的计算复杂度;③结合Matlab仿真进行算法验证与科研复现;④拓展至电力、机器人、通信等多领域仿真研究。; 阅读建议:建议读者结合文中提供的网盘资源,下载相关代码进行实践操作,重点关注速度-相位图的构建逻辑与AVR任务建模方法,并参考其他领域案例举一反三,提升科研效率与创新能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值