PCA检测人脸的简单示例_matlab实现

原创 2012年03月23日 00:06:50
%训练
%Lx=X'*X
clear;
clc;
train_path='..\Data\TrainingSet\';
phi=zeros(64*64,20);
for i=1:20
path=strcat(train_path,num2str(i),'.bmp');
Image=imread(path);
Image=imresize(Image,[64,64]);
phi(:,i)=double(reshape(Image,1,[])');
end;
%mean
mean_phi=mean(phi,2);
mean_face=reshape(mean_phi,64,64);
Image_mean=mat2gray(mean_face);
imwrite(Image_mean,'meanface.bmp','bmp');
%demean
for i=1:19
X(:,i)=phi(:,i)-mean_phi;
end
Lx=X'*X;
tic;
[eigenvector,eigenvalue]=eigs(Lx,19);
toc;
%normalization
for i=1:19
%K-L变换
UL(:,i)=X*eigenvector(:,i)/sqrt(eigenvalue(i,i));
end
%display Eigenface
for i=1:19
Eigenface=reshape(UL(:,i),[64,64]);
figure(i);
imshow(mat2gray(Eigenface));
end

得到的均值图像mean_face:

前19个最大主元对应的“特征脸”

测试
测试用样本:

%使用测试样本进行测试
clc;
test_path='..\Data\TestingSet\';
error=zeros([1,4]);
for i=1:4
path=strcat(test_path,num2str(i),'.bmp');
Image=imread(path);
Image=double(imresize(Image,[64,64]));
phi_test=zeros(64*64,1);
phi_test(:,1)=double(reshape(Image,1,[])');
X_test=phi_test-mean_phi;
Y_test=UL'*X_test;
X_test_re=UL*Y_test;
Face_re=X_test_re+mean_phi;
calculate error rate
e=Face_re-phi_test;


%%display figure
Face_re_2=reshape(Face_re(:,1),[64,64]);
figure(i);

imshow(mat2gray(Image));
title('Original');
figure(10+i);
imshow(mat2gray(Face_re_2));
title('Reconstruct');
error(1,i)=norm(e);

%dispaly error rate
error_rate=error(1,i);
display(error_rate);
end
重建出的测试样本与原样本的对比:

四副测试样本的重建误差分别为:
1.4195e+003
1.9564e+003
4.7337e+003
7.0103e+003

可见测试样本为人脸的样本的重建误差显然小于非人脸的重建误差。


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

协方差矩阵和散布矩阵(散度矩阵)的意义

在机器学习模式识别中,经常需要应用到协方差矩阵C和散布矩阵S。如在PCA主成分分析中,需要计算样本的散度矩阵,有的论文是计算协方差矩阵。实质上二者意义差不多,散布矩阵(散度矩阵)前乘以系数1/(n-1...

基于MATLAB,运用PCA+SVM的特征脸方法人脸识别

概述:
  • yb536
  • yb536
  • 2014-10-29 15:13
  • 11382

PCA的数学原理(非常值得阅读)!!!!

PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降...

PCA降维算法详解——Coursera笔记

转载:http://blog.csdn.net/a784763307/ 1. 前言  PCA : principal component analysis ( 主成分分析) 最近发现我的一篇关...

PCA原理分析和Matlab实现方法(三)

PCA主成分分析原理分析和Matlab实现方法(三) PCA算法主要用于降维,就是将样本数据从高维空间投影到低维空间中,并尽可能的在低维空间中表示原始数据。PCA的几何意义可简单解释为: ...

PCA降维算法总结以及matlab实现PCA(个人的一点理解)

PCA的一些基本资料 最近因为最人脸表情识别,提取的gabor特征太多了,所以需要用PCA进行对提取的特征进行降维。 本来最早的时候我没有打算对提取的gabor特征进行降维,但是如果一个图像时64...

PCA原理分析和意义(一)

原文链接:http://blog.codinglabs.org/articles/pca-tutorial.html PCA(Principal Component Analysis)是一种常用的数...

PCA的应用示例

在 PCA 详细算法介绍 (http://blog.csdn.net/watkinsong/article/details/38536463) 中, 因为篇幅问题 没有给出详细的代码示例, 这里给出代...

用java实现的邮件系统一(SMTP 服务器,单发,和群发)

package com.wepull.smtp;import java.io.BufferedReader;import java.io.File;import java.io.FileNotFoun...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)