基于PCA的人脸识别(MATLAB)

本文介绍了一个使用PCA算法进行人脸识别的项目,基于剑桥大学ORL人脸数据库,采用7:3的比例进行训练和测试。通过计算识别正确的图像数与总测试图像数的比率评估正确率。PCA流程包括主成分分析、K-L变换和识别过程,通过MATLAB实现,并展示了随着保留主成分数量变化的识别率变化趋势。
摘要由CSDN通过智能技术生成

项目描述

采用数据库为剑桥大学ORL人脸数据库,包含40个人的400张人脸图像(每人对应10张),图像为92x112灰度图像(256灰度级)对于每个人的10张图像,随机选择7张用来训练,另外3张用于测试。采用2范数最小匹配,对每个人的另外3张训练图像分别测试,共测试3x40个图像,计算识别系统的正确率=(识别正确的图像数)/120。

算法描述

流程图

流程图

基本原理及步骤分析
主成份

设有随机变量X1,X2,…,Xp,样本标准差记为S1,S2,…,Sp。
若C1=a11x1+a12x2+ … +a1pxp,且使 Var(C1)最大,则称C1为第一主成分;
若C2=a21x1+a22x2+…+a2pxp, (a21,a22,…,a2p)垂直于(a11,a12,…,a1p),且使Var(C2)最大,则称C2为第二主成分;
类似地,可有第三、四、五…主成分,至多有p个。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值