百度 机器学习/数据挖掘 一面 被淘汰 记

本文记录了作者参加百度2013年校招机器学习/数据挖掘一面的过程,面试中涉及了矩阵填充、推荐系统、最小二乘法、虚函数、信号量、聚类算法和分类算法等多个技术点。尽管面试官的问题围绕作者的简历展开,但作者因对部分知识点理解不深入而未通过面试。总结教训强调面试前要充分准备和深入理解自己所做项目。
摘要由CSDN通过智能技术生成
百度2013校招,西安站,面试时间:2012年9月24日下午3点,地点:西安颐和宫大酒店。

面试官是一个很年轻很帅的GG,看起来比我大不了几岁,甚至和我一样大的样子,标准的学术牛、技术帅。

之前在网上搜过一些面经,一般会出一到三道算法(包括基本的排序、二叉树非递归遍历之类的,还有其他算法等),让写在纸上的。但是这次面试官根本没让写任何算法,很出乎我的意料。面试直接从我的简历说起。

1. 看着我的简历,问我研究生阶段做的东西。我说基因微阵列缺失点的重建,用到了矩阵填充、最小二乘法求系数等。然后他让我解释一下矩阵填充,我说是以矩阵的低秩为假设条件和优化目标的,他问为什么会低秩,这个我真不知道(其实微阵列数据并不符合低秩的假设,只是我做的工作以低秩为优化目标,效果比行均值填充好一些罢了),然后我扯了下这个是需要生物学方面的证明的.....他就没再问这个问题。接下来他问矩阵填充可以应用在哪些方面,我说可以用在推荐系统上,然后用netflix的电源推荐系统举了例子。然后就推荐系统,他又问了些问题,感觉像是开放类的问题,没有固定的答案,甚至像是产品类的面试了,跟技术没多大关系了。

2. 之后问我这个低秩的目标是怎么实现的,我说了两个方法,svt和ALM,都是写文章时看过的。但是时间长了,已经忘得差不多了,svt只是大概说了下求奇异值分解,然后解释alm的时候用拉格朗日乘子,让我把这个式子写出了,不记得了,这个问题就此作罢。

3. 接下来问我一个
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值