# 51. N-Queens

84人阅读 评论(0)

The n-queens puzzle is the problem of placing n queens on ann×n chessboard such that no two queens attack each other.

Given an integer n, return all distinct solutions to the n-queens puzzle.

Each solution contains a distinct board configuration of the n-queens' placement, where'Q' and '.' both indicate a queen and an empty space respectively.

For example,
There exist two distinct solutions to the 4-queens puzzle:

[
[".Q..",  // Solution 1
"...Q",
"Q...",
"..Q."],

["..Q.",  // Solution 2
"Q...",
"...Q",
".Q.."]
]


	static int[] col;
static List<List<String>> res;

public static List<List<String>> solveNQueens(int n) {
res = new ArrayList<List<String>>();
col = new int[n];
nqueens(0, n);
return res;
}

public static void nqueens(int colIndex, int n) {
if (colIndex == n) {
printRes(n);
return;
}
for (int i = 0; i < n; i++) {
col[colIndex] = i;
if (valid(colIndex)) {
nqueens(colIndex + 1, n);
}
}
}

private static boolean valid(int colIndex) {
for (int i = 0; i < colIndex; i++) {
// 行不可能重复，列如果重复或者对角线重复
if (col[i] == col[colIndex]
|| Math.abs(col[i] - col[colIndex]) == colIndex - i) {
return false;
}
}
return true;
}

private static void printRes(int n) {
List<String> resList = new ArrayList<String>();
for (int i = 0; i < n; i++) {
StringBuffer buffer = new StringBuffer();
int tmp = col[i];
for (int j = 0; j < tmp; j++) {
buffer.append(".");
}
buffer.append("Q");
for (int j = tmp + 1; j < n; j++) {
buffer.append(".");
}
}
}

0
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：37073次
• 积分：555
• 等级：
• 排名：千里之外
• 原创：177篇
• 转载：21篇
• 译文：0篇
• 评论：4条
文章分类
阅读排行
评论排行
最新评论