关闭

51. N-Queens

标签: LeetCode
84人阅读 评论(0) 收藏 举报
分类:

The n-queens puzzle is the problem of placing n queens on ann×n chessboard such that no two queens attack each other.

Given an integer n, return all distinct solutions to the n-queens puzzle.

Each solution contains a distinct board configuration of the n-queens' placement, where'Q' and '.' both indicate a queen and an empty space respectively.

For example,
There exist two distinct solutions to the 4-queens puzzle:

[
 [".Q..",  // Solution 1
  "...Q",
  "Q...",
  "..Q."],

 ["..Q.",  // Solution 2
  "Q...",
  "...Q",
  ".Q.."]
]
思路:

设置一个数组用来存储n个皇后所在的列数,每存放一个皇后检查一下列是否重复,对角线是否重复。

	static int[] col;
     static List<List<String>> res;

        public static List<List<String>> solveNQueens(int n) {
		res = new ArrayList<List<String>>();
		col = new int[n];
		nqueens(0, n);
		return res;
	}

	public static void nqueens(int colIndex, int n) {
		if (colIndex == n) {
			printRes(n);
			return;
		}
		for (int i = 0; i < n; i++) {
			col[colIndex] = i;
			if (valid(colIndex)) {
				nqueens(colIndex + 1, n);
			}
		}
	}

	private static boolean valid(int colIndex) {
		for (int i = 0; i < colIndex; i++) {
			// 行不可能重复,列如果重复或者对角线重复
			if (col[i] == col[colIndex]
					|| Math.abs(col[i] - col[colIndex]) == colIndex - i) {
				return false;
			}
		}
		return true;
	}

	private static void printRes(int n) {
		List<String> resList = new ArrayList<String>();
		for (int i = 0; i < n; i++) {
			StringBuffer buffer = new StringBuffer();
			int tmp = col[i];
			for (int j = 0; j < tmp; j++) {
				buffer.append(".");
			}
			buffer.append("Q");
			for (int j = tmp + 1; j < n; j++) {
				buffer.append(".");
			}
			resList.add(buffer.toString());
		}
		res.add(resList);
	}



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:37073次
    • 积分:555
    • 等级:
    • 排名:千里之外
    • 原创:177篇
    • 转载:21篇
    • 译文:0篇
    • 评论:4条
    文章分类
    最新评论