关闭

[完]机器学习实战 第一章 机器学习基础(Maching Learning Foundation)

230人阅读 评论(0) 收藏 举报
分类:
  • 训练集:为算法输入大量已分类数据作为算法的训练集。
  • 目标变量:是机器学习算法的预测结果,在分类算法中目标变量的类型通常是标称型、离散型的,而在回归算法中通常是连续型的。
  • 分类(Classification)和回归(Regression),分类的任务,将数据划分到合适的分类中。回归的任务,用于预测数值型数据,回归的例子–数据拟合曲线。
  • 监督学习:分类和回归通常属于此类学习,这类算法必须知道预测什么,即目标变量的分类信息。
  • 无监督学习:数据没有类别信息,也不给定目标值。在无监督学习中,将数据集合分成由类似的对象组成的多个类的过程称为聚类。将寻找描述数据统计值的过程称之为密度估计。无监督学习还可以减少数据特征的维度
  • 开发机器学习应用程序的步骤
    • 1、收集数据(爬虫、RSS、物联网);
    • 2、准备输入数据(为机器学习准备特定的数据格式);
    • 3、分析输入数据(空值、数据模式、异常值、图形展示数据),确保数据集中没有垃圾数据;
    • 4、训练算法(从格式化数据中抽取知识和信息),无监督学习,由于数据中没有目标变量值,不需训练算法;
    • 5、测试算法;
    • 6、使用算法。
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:37301次
    • 积分:832
    • 等级:
    • 排名:千里之外
    • 原创:47篇
    • 转载:3篇
    • 译文:0篇
    • 评论:7条
    文章分类
    最新评论