[完]机器学习实战 第一章 机器学习基础(Maching Learning Foundation)

原创 2016年08月29日 11:15:38
  • 训练集:为算法输入大量已分类数据作为算法的训练集。
  • 目标变量:是机器学习算法的预测结果,在分类算法中目标变量的类型通常是标称型、离散型的,而在回归算法中通常是连续型的。
  • 分类(Classification)和回归(Regression),分类的任务,将数据划分到合适的分类中。回归的任务,用于预测数值型数据,回归的例子–数据拟合曲线。
  • 监督学习:分类和回归通常属于此类学习,这类算法必须知道预测什么,即目标变量的分类信息。
  • 无监督学习:数据没有类别信息,也不给定目标值。在无监督学习中,将数据集合分成由类似的对象组成的多个类的过程称为聚类。将寻找描述数据统计值的过程称之为密度估计。无监督学习还可以减少数据特征的维度
  • 开发机器学习应用程序的步骤
    • 1、收集数据(爬虫、RSS、物联网);
    • 2、准备输入数据(为机器学习准备特定的数据格式);
    • 3、分析输入数据(空值、数据模式、异常值、图形展示数据),确保数据集中没有垃圾数据;
    • 4、训练算法(从格式化数据中抽取知识和信息),无监督学习,由于数据中没有目标变量值,不需训练算法;
    • 5、测试算法;
    • 6、使用算法。
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

a brief history of maching learning(机器学习简史)

写在前面的话: 适值毕业之季,因毕业论文的需要,又恰好看到这篇博文,写的甚是不错,因此,进行了翻译,作为我的第一篇博文。这里给出原作者Blog Address(http://www.erogol.co...

building machine learning system with Python 学习笔记--从零开始机器学习(2)第一章

Python机器学习入门 ps:想了解机器学习发展历史、使命、面临的问题这些的可以看百度BOSS李彦宏新书《智能革命》,挺通俗易懂的。 机器学习的目标就是通过若干示例让机器学会完成人物,例如电子邮...

机器学习实战读书笔记-第一章k-近邻算法

才开始看机器学习实战这本书,确实有些晚了,还只能在碎片时间来看,不过确实非常有用 接下来按照书上的例子实际操作了一遍,源代码和数据在书前面的链接里就能找到 我用的python3+win8.1 第...

机器学习实战——第一章

机器学习能让我们从数据集得到启发搜素引擎,邮件过滤系统,推荐系统,数据挖掘(啤酒和尿布) 机器学习在我们生活中随处可见。机器学习是必学的。即使想做其他方向的研究,ML也是基础1:机器学习专业术语 ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)