自定义博客皮肤

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

shell中for循环总结

关于shell中的for循环用法很多,一直想总结一下,今天网上看到上一篇关于for循环用法的总结,感觉很全面,所以就转过来研究研究,嘿嘿…1、 for((i=1;i<=10;i++));do echo (expr(expr i *4);done 2、在shell中常用的是 for i in...

2017-01-17 20:30:35

阅读数 563

评论数 0

ubuntu14.04+cuda7.5+opencv3.0+cudnn+caffe

最近在配置caffe,出了许多的问题,今天终于解决了,感谢各位大神的博客,在文中会一一点出来。一.安装ubuntu 14.04 这里采用的是windows+ubuntu双系统。可能要注意的几个问题: 1.先装windows再装linux,因为在windows下进行磁盘操作相对会熟悉一些。 2...

2017-01-17 20:09:00

阅读数 1310

评论数 0

利用Caffe做回归(regression)

利用Caffe做回归(regression)Caffe应该是目前深度学习领域应用最广泛的几大框架之一了,尤其是视觉领域。绝大多数用Caffe的人,应该用的都是基于分类的网络,但有的时候也许会有基于回归的视觉应用的需要,查了一下Caffe官网,还真没有很现成的例子。这篇举个简单的小例子说明一下如何用...

2017-01-09 09:19:10

阅读数 2047

评论数 0

矩阵的求导问题小结

Torch的安装和常见问题 Torch安装 http://torch.ch/docs/getting-started.html#next-steps 常见问题 https://github.com/torch/torch7/wiki/Cheatsheet 快捷键 加粗 ...

2016-09-07 08:46:53

阅读数 9924

评论数 3

matlab与c++交互基础,混合编程工程进阶

一·简介matlab在处理矩阵运算时有很大的优势,但在处理循环时性能不如c,c++ ,所以很多时候,我们需要进行交互编程,本文首先介绍一些基础的入门知识,然后分析一个大型工程应用caffe_,从工程的视角分析,该如何设计好一个大型的交互接口。同时,找到matlab性能的瓶颈,正是我们需要改进的地方...

2016-05-26 14:16:00

阅读数 2811

评论数 0

C++ Primer 学习总结(附习题程序)

可以说C++ Primer算是C++程序学习中本十分经典的教材,前前后后,读了3遍,每次都是一遍带过,每次也都有新的感悟和收获,有时是查漏补缺,有时是有新的灵感,继而豁然开朗。中间有些许内容读不懂,不过没关系,先行略过就好,后面有了一定的基础再来看前面,或许会有不一样的感悟。第三次的过的时候,整理...

2016-05-16 22:28:43

阅读数 510

评论数 0

Makefile在大型工程文件中的应用简析

这段时间,再次温习了一遍makefile,想着去分析一下大型工程文件中,是怎么使用makefile的,需要注意那些地方,这里以caffe的makefile做一个简短的分析。 这里给出两个非常棒的参考: http://blog.csdn.net/ruglcc/article/details/781...

2016-05-12 11:43:17

阅读数 3853

评论数 0

matlab实战中一些重要的函数总结

这段时间看了一些大型的matlab工程文件(如:faster r-cnn),对于工程中经常要用到的一些函数进行一个总结。 1、路径问题。 这主要涵括文件路径的包含和组合。curdir = fileparts(mfilename('fullpath')); addpath(genpath(ful...

2016-04-23 12:12:25

阅读数 9108

评论数 1

faster-rcnn中utils下几个重要函数的解析

utils下的函数主要是为了整个工程调用的方便而设计的,这里讲解其中几个比较重要的函数。 1、boxoverlap.m 用来计算两个boxes中box间的重叠系数。元组o中的元素是矩阵,矩阵o{i}代表boxes a和box b(i)之间的交叉系数,size(o{i})=(m,1)。m–表示b...

2016-04-14 11:57:32

阅读数 2970

评论数 1

机器学习实战--fp-growth

接着前面所学的apriori频繁集挖掘,这里介绍一种更高效的发现频繁集的算法fp-growth(frequence pattern),对大数据量时尤其有效(近百万条数据中查找,一般电脑只需2s左右)但fp-growth算法只能用来进行发现频繁集,不能挖掘关联规则。 fp-growth算法主要由两...

2016-03-28 21:18:06

阅读数 712

评论数 0

机器学习实战--数据预处理

当数据量变的特别大,数据特征的维度变得很大时,若不对数据进行一定的预处理,将会使问题求解的速度变得很慢,甚至是无法求解。这里介绍两种数据预处理(降维)的方法:pca和svd 数据降维主要有这几种方法: 1、主成分分析(PCA):PCA实际上是进行坐标的转换,转换后的坐标的第一维选择数据方差最大...

2016-03-27 22:46:49

阅读数 1753

评论数 0

机器学习实战--apriori

前面主要学习了机器学习的两大块:分类,回归,接下来的两节进入到频繁项集和关联规则的分析。 关联分析中最著名的例子当属啤酒和尿布了。http://www.wtoutiao.com/a/904866.html 为了定义上述的频繁和关联我们引入两个定义: 1、支持度:数据集中包含该集项的记录所占的...

2016-03-26 23:04:06

阅读数 512

评论数 0

机器学习实战--kMeans

前面的几个章节主要学习了监督学习,从这节开始,进入到无监督学习。这节的内容主要有kMeans,kMeans簇的后处理,二分kMeans。一、kMeans1、算法原理: 2、算方法实现: 1、初始质心的选择def randCent(dataSet, k): n = shape(dat...

2016-03-25 16:26:37

阅读数 774

评论数 0

机器学习实战--CART

上一节中介绍的回归方法,主要用于线性问题中,但当数据量变大,特征值变多时,这些方法就变得不那么实用了。这一节介绍一下CART(分类回归树)用于回归。主要讲解两种树:回归树和模型数 在学习CART时,可以回顾一下我们前面所讲的决策树: http://blog.csdn.net/sunnyxiao...

2016-03-24 19:28:17

阅读数 1163

评论数 0

机器学习实战之--regression

前面主要讲到了分类问题,从这节开始,进入到回归的学习。这节主要介绍几个常用的数值回归算法。 1、线性回归 数据的线性拟合 平方误差损失函数: 回归系数: 主要算法实现:def standRegres(xArr,yArr): xMat = mat(xArr); yMat = mat...

2016-03-23 22:20:28

阅读数 1195

评论数 0

shell程序分析--qcd

这是国嵌中的一个小应用,目的在于我们能快速的在各个目录之间进行切换。 参考资料: 1、http://pan.baidu.com/s/1dEd1ZFz linux+命令行+shell脚本编程宝典 2、http://www.linuxidc.com/Linux/2014-03/97826.ht...

2016-03-19 22:31:18

阅读数 1173

评论数 0

机器学习实战--svm

这一节,研究了两天,有些地方,还是不是很明白。这里对于算法原理只做一个简单的纪要,具体可以参考我下面列出的博客,推导的很详细。 参考: 1.http://www.tuicool.com/articles/RRZvYb 2.http://www.cnblogs.com/jerrylead/ar...

2016-03-16 20:58:18

阅读数 2132

评论数 2

机器学习之--损失函数

此文章翻译至机器学习的一章讲义: http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf损失函数。 我们能得到一般化的损失函数表达式,如下(14.1),在(14.1)中,我们注意到损失函...

2016-03-16 15:38:40

阅读数 11429

评论数 0

机器学习实战--adaboost

前面我们已经学了好几个分类算法了(svm后面再讲),分类效果也还不错,但是我们也许会想,能不能在一个数据集上多次应用同一个算法,或者应用不同的算法呢?这就是我们adaboost的思想:通过多个弱分类器的组合,构成一个强分类器。 算法优点: 泛化错误率低,易编码,可应用在大部分分类器上,无需参数...

2016-03-13 23:13:13

阅读数 920

评论数 0

shell中for循环总结

关于shell中的for循环用法很多,一直想总结一下,今天网上看到上一篇关于for循环用法的总结,感觉很全面,所以就转过来研究研究,嘿嘿… 1、 for((i=1;i<=10;i++));do echo (expr(expr i *4);done 2、在shell中常用的是 for i ...

2016-03-12 13:27:28

阅读数 2827

评论数 0

提示
确定要删除当前文章?
取消 删除