ICA是一种用于在统计数据中寻找隐藏的因素或者成分的方法。ICA是一种广泛用于盲缘分离的(BBS)方法,用于揭示随机变量或者信号中隐藏的信息。ICA被用于从混合信号中提取独立的信号信息。ICA在20世纪80年代提出来,但是知道90年代中后期才开始逐渐流行起来。
ICA的起源可以来源于一个鸡尾酒会问题,我们假设三个观测点x1,x2,x3,放在房间里同时检测三个人说话,另三个人的原始信号为s1,s2,s3,则求解的过程可以如下图所示:
定义
假设n个随机变量x1,x2,….xn,由n个随机变量s1,s2,…sn组成,并且这n个随机变量是相互独立的,可以用下面的公示表达:
为了表达的方便,我们可以用向量的形式来表达:
x = As
这个只不过是ICA最基本的定义,在很多实际问题中,应该包含了噪声。但是为了简化问题,我们这里忽略了噪声。因为如果模型中包含噪音,处理起来将会十分困难,而且大多数不包含噪音的模型已经能够解决很多问题,所以这里我们就将噪声先忽略。
ICA的限制条件
- 独立成分应该是相互之间独立的。这是ICA成立的基本原则,同时,基本上可以说只需要这个原则我们就可以估计这个模型。
- 独立成分必须是非高斯分布的。高斯分布的高阶累计量是0,但是高阶信息对于ICA的模型的估计却是十分必要的。
- 为了简化,我们假设未知的混合矩阵A是一个方阵。
白化
白化是一种比不相关性要稍微强一些的性质。对一个零均值的随即向量y进行白化处理,就是让它的组成成分不相关,并且让变量的方差相等。也就是说,变量y的协方差矩阵是单位矩阵: