欢迎转载,转载请在醒目处注明出处,Ron’s Blog: http://www.neilron.xyz/set-up-docker-on-windows/
“谷歌”+“深度学习”,两个标签让2015年12月才由谷歌开源的深度学习工具TensorFlow在其发布之后就迅速地成为了全球最为炙手可热的开源项目,2016年4月,开源的TensorFlow又支持了分布式特性,向着生产环境下的应用更进一步。
TensorFlow API支持Python 2.7和Python 3.3+,共支持4种安装方式。
- Pip install
- Virtualenv install
- Anaconda install
- Docker install
其中大部分支持Linux和Mac OS,由于主要开发环境是Windows,我选择了最为灵活的docker方式安装TensorFlow。TensorFlow还有GPU支持版本,本文仅探索CPU-Only版本。
我计划完成一系列3篇博文,第一步安装docker,第二步单机版TensorFlow的Demo,第三步分布式TensorFlow的Demo,争取在1个月内完成。
1 Docker是什么?
借用Docker官网最大的一行字。
Docker allows you to package an application with all of its dependencies into a standardized unit for software development.
从功能上讲,Docker也可以理解为一种虚拟化的方案,可以通过构建包含不同软件的镜像,来达到快速部署开发环境的目的。
再借用官网的一张图,左边蓝色的部分从kernel开始一层层加了debian, emacs, apache形成了一个Image,每一层都是只读的,我们运行这个Image的时候,上面盖上了一层可读写的Container,让我们做一些编辑和修改,一个简单的服务器就可以用了;又如右边橘红色的部分,Kernel的上面加上了BusyBox就形成了Image,运行起来之后就可以以非常轻量级的方式运行起busybox中支持的命令。再有我们接下来要学习的TensorFlow镜像,就包含了运行它所需要的全部依赖,简单操作就可以完成TensorFlow开发环境的搭建。
更多的Docker理解推荐阅读10张图带你深入理解Docker容器和镜像
2 安装Docker
要在Windows上运行Docker,首先需要下载和安装Docker Toolbox。顺便奉上Docker Windows文档,更喜欢官方文档的话可以看这里,也可以按照本文的步骤继续。
2.1 确认系统版本
首先确认自己的系统是WIN 7或更新的64位系统,且需要支持硬件虚拟化技术。
Win 8及以上查看方法:
Win 7查看方法
Win 7 运行Microsoft® Hardware-Assisted Virtualization Detection Tool这一工具执行检查。
完成之后就可以继续下一步了。
2.2 安装Docker Toolbox
点击Docker Toolbox下载,在本文写作时的最新版本为1.11.1,。
安装过程会安装Docker的各个组件和Oracle VirtualBox,因为Docker需要依赖Linux内核的一些特性,因此Mac和Windows都需要在机器上运行一个小型的Linux系统作为Host系统。如果已经安装过VirtualBox的最新版本,则无需重新安装。
自行选择安装路径,如果已经安装过Git也可以去掉该工具的勾选,VirtualBox也是一样,其它可一路Next。
2.3 配置Docker
安装完成后,建议先配置一个环境变量MACHINE_STORAGE_PATH,来自定义虚拟机保存的位置&