在windows上部署tensorflow serving GPU版本

这篇博客详细记录了在Windows上部署TensorFlow Serving GPU版本的步骤,包括确认显卡CUDA支持、安装CUDA和cuDNN、创建TensorFlow GPU虚拟环境、配置CUDA路径、启用Hyper-V和虚拟化、安装及验证Docker、拉取TensorFlow Serving镜像、启动服务并使用POSTMAN测试REST API接口。
摘要由CSDN通过智能技术生成


前言

目的:
更灵活:多平台可用
更高效:运行目标250-400张图/s。

博主菜鸡 / 缝合怪, 此贴仅为记录自己遇到过的坑,大佬勿喷,喷子绕道。
Markdown将文本转换为 HTML。


确认显卡是否支持CUDA

设备性能要求:NVIDIA显卡,如何查看显卡信息见:
link

没有的可以散了

安装CUDA

官方网址:link
安装步骤见:link

安装cuDNN

同上,安装步骤见:link

在Anaconda建立TensorFlow GPU虚拟环境

没有anaconda的自己装。有人说选择Windows下Python3.7时,必须选择64位,因为TF不支持Python32位(link

配置CUDA环境路径

我的电脑——>属性——>高级系统设置——>环境变量
具体见:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值