UOJ#228 基础数据结构练习题

该博客探讨了UOJ#228题目中涉及的基础数据结构问题,重点在于处理区间加操作与开根运算。博主分析了如何维护区间最大值和最小值,并在开根后处理相同值的情况。通过讨论分界点的概念,解释了算法的时间复杂度,指出在初始值和区间加权值限制下,额外的操作次数为常数级别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

区间加操作正常做,考虑开根操作,维护区间最大最小值,如果区间的最大最小值开根后相同,则直接区间赋值,如果不同但最大值为最小值加1,则区间加上根号最小值减最小值,否则递归下去

考虑这个算法的复杂度,如果两个相邻的点导致包括这两个点的区间必须要从这里分成两边才能处理开根操作(即两个数开根后不同且大的那个不为小的那个+1),则称为一个分界点,一个分界点相当于把一次开根拆成两次,若不考虑区间加操作,由于序列初始值<=1e5则最多4次开根分界点就会消失,而区间加操作加的权值也<=1e5,所以一次区间加最多给两个点增加4次需要的操作,常数而已

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<map>
#include<set>
#include<bitset>
#include<queue>
#include<stack>
using namespace std;
#define MAXN 100010
#define MAXM 1010
#define INF 1000000000
#define MOD 1000000007
#define eps 1e-8
#define ll long long
ll mx[MAXN<<2],mn[MAXN<<2],ch[MAXN<<2],ad[MAXN<<2];
ll s[MAXN<<2];
ll n,m;
inline void toch(ll x,ll y,ll z,ll v){
	s[x]=(ll)(z-y+1)*v;
	mx[x]=mn[x]=ch[x]=v;
	ad[x]=0;
}
inline void toadd(ll x,ll y,ll z,ll v){
	s[x]+=(ll)(z-y+1)*v;
	mx[x]+=v;
	mn[x]+=v;
	ad[x]+=v;
}
inline void ud(ll x){
	s[x]=s[x<<1]+s[x<<1|1];
	mx[x]=max(mx[x<<1],mx[x<<1|1]);
	mn[x]=min(mn[x<<1],mn[x<<1|1]);
}
inline void pd(ll x,ll y,ll z){
	ll mid=y+z>>1;
	if(ch[x]!=-1){
		toch(x<<1,y,mid,ch[x]);
		toch(x<<1|1,mid+1,z,ch[x]);
		ch[x]=-1;
	}
	if(ad[x]){
		toadd(x<<1,y,mid,ad[x]);
		toadd(x<<1|1,mid+1,z,ad[x]);
		ad[x]=0;
	}
}
void build(ll x,ll y,ll z){
	ch[x]=-1;
	if(y==z){
		scanf("%lld",&s[x]);
		mx[x]=mn[x]=s[x];
		return ;
	}
	ll mid=y+z>>1;
	build(x<<1,y,mid);
	build(x<<1|1,mid+1,z);
	ud(x);
}
void add(ll x,ll y,ll z,ll l,ll r,ll av){
	if(y==l&&z==r){
		toadd(x,y,z,av);
		return ;
	}
	pd(x,y,z);
	ll mid=y+z>>1;
	if(r<=mid){
		add(x<<1,y,mid,l,r,av);
	}else if(l>mid){
		add(x<<1|1,mid+1,z,l,r,av);
	}else{
		add(x<<1,y,mid,l,mid,av);
		add(x<<1|1,mid+1,z,mid+1,r,av);
	}
	ud(x);
}
void sq(ll x,ll y,ll z,ll l,ll r){
	ll mid=y+z>>1;
	if(y==l&&z==r){
		if((ll)(sqrt(mn[x]))==(ll)(sqrt(mx[x]))){
			toch(x,y,z,(ll)(sqrt(mn[x])));
			return ;
		}else if(mx[x]==mn[x]+1){
			toadd(x,y,z,(ll)(sqrt(mn[x]))-mn[x]);
			return ;
		}
		pd(x,y,z);
		sq(x<<1,y,mid,l,mid);
		sq(x<<1|1,mid+1,z,mid+1,r);
		ud(x);
		return ;
	}
	pd(x,y,z);
	if(r<=mid){
		sq(x<<1,y,mid,l,r);
	}else if(l>mid){
		sq(x<<1|1,mid+1,z,l,r);
	}else{
		sq(x<<1,y,mid,l,mid);
		sq(x<<1|1,mid+1,z,mid+1,r);
	}
	ud(x);
}
ll ask(ll x,ll y,ll z,ll l,ll r){
	if(y==l&&z==r){
		return s[x];
	}
	pd(x,y,z);
	ll mid=y+z>>1;
	if(r<=mid){
		return ask(x<<1,y,mid,l,r);
	}else if(l>mid){
		return ask(x<<1|1,mid+1,z,l,r);
	}else{
		return ask(x<<1,y,mid,l,mid)+ask(x<<1|1,mid+1,z,mid+1,r);
	}
}
int main(){
	/*
	freopen("data.txt","r",stdin);
	freopen("dui.txt","w",stdout);
	//*/
	ll i,x,y,z,o;
	scanf("%lld%lld",&n,&m);
	build(1,1,n);
	while(m--){
		scanf("%lld%lld%lld",&o,&x,&y);
		if(o==1){
			scanf("%lld",&z);
			add(1,1,n,x,y,z);
		}
		if(o==2){
			sq(1,1,n,x,y);
		}
		if(o==3){
			printf("%lld\n",ask(1,1,n,x,y));
		}
	}
	return 0;
}

/*
5 5
2 5 4 2 1 
1 1 5 4
3 3 3
1 3 3 4
3 3 3
2 2 5


*/



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值