BZOJ4347 [POI2016]Nim z utrudnieniem

这题。挺厉害

我们可以用f[i][j][k]表示前i个数,选的个数模d余j,异或和为k的方案数

我们要求的是f[n][0][s],s为所有数的异或和,另外在n是d的倍数的时候要减一

可是这样直接转移的话显然会超时

我们把所有权重从小到大排序,一个数和所有比他小的数所产生的异或和一定不会超过这个数的两倍

所以复杂度就变成了O(dm)

#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<iomanip>
#include<queue>
#include<map>
#include<bitset>
#include<stack>
#include<vector>
#include<set>
using namespace std;
#define MAXN 1100010
#define MAXM 10
#define INF 1000000000
#define MOD 1000000007
#define ll long long
#define eps 1e-8
int f[MAXM][MAXN],g[MAXN];
int a[MAXN];
int n,d;
int s;
int main(){
	int i,j,k;
	scanf("%d%d",&n,&d);
	for(i=1;i<=n;i++){
		scanf("%d",&a[i]);
		s^=a[i];
	}
	sort(a+1,a+n+1);
	f[0][0]=1;
	for(i=1;i<=n;i++){
		for(j=0;j<MAXN&&j<=a[i]*2;j++){
			g[j]=(f[0][j]+f[d-1][j^a[i]])%MOD;
		}
		for(k=d-1;k;k--){
			for(j=0;j<MAXN&&j<=a[i]*2;j++){
				(f[k][j]+=f[k-1][j^a[i]])%=MOD;
			}
		}
		for(j=0;j<MAXN&&j<=a[i]*2;j++){
			f[0][j]=g[j];
		}
	}
	if(n%d==0){
		(f[0][s]+=MOD-1)%=MOD;
	}
	printf("%d\n",f[0][s]);
	return 0;
}

/*

*/


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值