这题。挺厉害
我们可以用f[i][j][k]表示前i个数,选的个数模d余j,异或和为k的方案数
我们要求的是f[n][0][s],s为所有数的异或和,另外在n是d的倍数的时候要减一
可是这样直接转移的话显然会超时
我们把所有权重从小到大排序,一个数和所有比他小的数所产生的异或和一定不会超过这个数的两倍
所以复杂度就变成了O(dm)
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<iomanip>
#include<queue>
#include<map>
#include<bitset>
#include<stack>
#include<vector>
#include<set>
using namespace std;
#define MAXN 1100010
#define MAXM 10
#define INF 1000000000
#define MOD 1000000007
#define ll long long
#define eps 1e-8
int f[MAXM][MAXN],g[MAXN];
int a[MAXN];
int n,d;
int s;
int main(){
int i,j,k;
scanf("%d%d",&n,&d);
for(i=1;i<=n;i++){
scanf("%d",&a[i]);
s^=a[i];
}
sort(a+1,a+n+1);
f[0][0]=1;
for(i=1;i<=n;i++){
for(j=0;j<MAXN&&j<=a[i]*2;j++){
g[j]=(f[0][j]+f[d-1][j^a[i]])%MOD;
}
for(k=d-1;k;k--){
for(j=0;j<MAXN&&j<=a[i]*2;j++){
(f[k][j]+=f[k-1][j^a[i]])%=MOD;
}
}
for(j=0;j<MAXN&&j<=a[i]*2;j++){
f[0][j]=g[j];
}
}
if(n%d==0){
(f[0][s]+=MOD-1)%=MOD;
}
printf("%d\n",f[0][s]);
return 0;
}
/*
*/