BZOJ1778 [Usaco2010 Hol]Dotp 驱逐猪猡

本文介绍了一种解决概率图问题的方法,通过将每个节点分解为两种状态并运用高斯消元算法来计算节点的期望经过次数。特别适用于处理节点可能存在的爆炸状态,最终结果保留九位小数精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

把每个点拆成两个点,不爆炸和爆炸

然后就可以高斯消元求每个点的期望经过次数了,爆炸的点没有出边,所以就是爆炸的概率

题目描述有误差评,没SPJ,要保留9位小数

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<map>
#include<set>
#include<bitset>
#include<queue>
#include<stack>
using namespace std;
#define MAXN 310
#define MAXM 610
#define INF 1000000000
#define MOD 1000000007
#define eps 1e-8
#define ll long long
bool mp[MAXN][MAXN];
int d[MAXN];
int n,m,s1,s2,N;
double a[MAXM][MAXM];
int P,Q;
void gs(){
	int i,j,k;
	for(i=1;i<=N;i++){
		if(fabs(a[i][i])<eps){
			for(j=i+1;j<=N;j++){
				if(fabs(a[j][i])>eps){
					for(k=1;k<=N+1;k++){
						swap(a[i][k],a[j][k]);
					}
					break;
				}
			}
		}
		if(fabs(a[i][i])>eps){
			for(j=1;j<=N;j++){
				if(i!=j){
					double t=a[j][i]/a[i][i];
					for(k=1;k<=N+1;k++){
						a[j][k]-=a[i][k]*t;
					}
				}
			}
		}
	}
}
int main(){
	int i,j,x,y;
	scanf("%d%d%d%d",&n,&m,&P,&Q);
	N=n*2;
	for(i=1;i<=m;i++){
		scanf("%d%d",&x,&y);
		mp[x][y]=mp[y][x]=1;
		d[x]++;
		d[y]++;
	}
	for(i=1;i<=n;i++){
		a[i][i]=a[n+i][n+i]=1;
		a[n+i][i]-=1.0*P/Q;
		for(j=1;j<=n;j++){
			if(mp[i][j]){
				a[i][j]-=(1.0-1.0*P/Q)/d[j];
			}
		}
	}
	a[1][N+1]=1;
	gs();
	for(i=1;i<=n;i++){
		printf("%.9lf\n",a[n+i][N+1]/a[n+i][n+i]);
	}
	return 0;
}

/*

*/


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值