关闭

BZOJ1406 [AHOI2007]密码箱

492人阅读 评论(0) 收藏 举报
分类:

题里要你求x^2=1(mod n),0<=x<n的解

化简一下相当于求n|(x+1)(x-1)的解

这样的话必然可以把n分解成n1*n2,其中n1是x+1的约数,n2是x-1的约数

n1和n2中必有一个大于等于根号n,我们枚举这个大于等于根号n的,然后枚举他的倍数作为x+1或者x-1,然后判断可不可行即可

这样会落掉1,把1再加到答案里就好了

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<map>
#include<set>
#include<bitset>
#include<queue>
#include<stack>
using namespace std;
#define MAXN 1000010
#define MAXM 1010
#define INF 1000000000
#define MOD 1000000007
#define eps 1e-8
#define ll long long
ll n;
ll ans[MAXN],tot;
int main(){
	ll i,j;
	scanf("%lld",&n);
	ll N=sqrt(n);
	for(i=1;i<=N;i++){
		if(!(n%i)){
			int t=n/i;
			for(j=t;j<=n;j+=t){
				if(j+1<n&&(j+2)%i==0){
					ans[++tot]=j+1;
				}
				if(j>2&&(j-2)%i==0){
					ans[++tot]=j-1;
				}
			}
		}
	}
	ans[++tot]=1;
	sort(ans+1,ans+tot+1);
	for(i=1;i<=tot;i++){
		if(ans[i]!=ans[i-1]){
			printf("%lld\n",ans[i]);
		}
	}
	return 0;
}

/*
12
*/


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:193446次
    • 积分:5891
    • 等级:
    • 排名:第4776名
    • 原创:401篇
    • 转载:0篇
    • 译文:1篇
    • 评论:103条
    最新评论