poj 1845 Sumdiv(分治+快速幂)

原创 2012年03月24日 02:26:23

【题目大意】:求A^B的约数和mod 9901.(0 <= A,B <= 50000000)


【解题思路】:

A^B的约数和记为S,则S=(1+p1+p1^2+...+p1^q1)*(1+p2+p2^2+....+p2^q2)*....*(1+pn+pn^2+...pn^qn);

对于上述的式子,pi代表质因子,qi代表个数。

根据二分法分治,我们又可以知道:

1+p+p^2+...+p^n=

当n为奇数,(1+p+p^2+...+p^((n+1)/2))*(1+p^((n+1)/2))

当n为偶数,(1+p+p^2+...+p^((n+1)/2)+p^((n+1)/2)*(1+p*(1+p+p^2+...+p^((n+1)/2)))

因此,我们不妨用二分分治加快速幂解决这道题


【代码】:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <cmath>
#include <string>
#include <cctype>
#include <map>
#include <iomanip>
                   
using namespace std;
                   
#define eps 1e-8
#define pi acos(-1.0)
#define inf 1<<30
#define linf 1LL<<60
#define pb push_back
#define lc(x) (x << 1)
#define rc(x) (x << 1 | 1)
#define lowbit(x) (x & (-x))
#define ll long long
#define c 9901

int prime[7711],total=0;

void isprime(){
    int i,j;
    prime[1]=1;
    for(int i=2; i*i<=7711; i++)
        for(int j=i*i; j<=7711; j+=i)
            prime[j]=1;
    for(int i=2; i<=7711; i++)
        if(!prime[i])
            prime[total++]=i;
}

ll mod_exp(ll a,ll b){
    ll m=1;
    while(b){
        if(b&1)
            m=(m%c)*(a%c)%c;
        b>>=1;
        a=(a%c)*(a%c)%c;
    }
    return m;
}

ll sum(ll p,ll k){
    if(k==1)
        return 1;
    ll t=(sum(p,k/2));
    if(k&1)
        return (t+mod_exp(p,k/2)*(1+p*t))%c;
    else
        return ((1+mod_exp(p,k/2))*t)%c;
}

int main(){
    ll a,b,ans;
    int i,k;
    isprime();
    while(~scanf("%lld%lld",&a,&b)){
        ans=1;
        for(int i=0; i<total && a>1; i++){
            k=0;
            while(a%prime[i]==0){
                k++;
                a/=prime[i];
            }
            ans=(ans*sum(prime[i],k*b+1))%c;
        }
        if(a>1)
            ans=(ans*sum(a,b+1))%c;
        printf("%lld\n",ans);
    }
    return 0;
}




POJ 1845:Sumdiv 快速幂+逆元

Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 16466   Accepted: 4101 ...
  • u010885899
  • u010885899
  • 2015年09月17日 10:41
  • 1241

(POJ - 1845)Sumdiv(分治法/费马小定理+快速幂)

Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S m...
  • feng_zhiyu
  • feng_zhiyu
  • 2017年08月03日 18:45
  • 99

快速幂取模以及分治法幂取模

long long qumo(long long a, long long b, long long m) {     if(b == 0) return 1;     int x = qumo(a,...
  • yxm980918
  • yxm980918
  • 2017年03月15日 20:08
  • 449

POJ 1845 Sumdiv(快速幂取模+快速分解因式)

小優的博客写的
  • xu12110501127
  • xu12110501127
  • 2014年06月01日 17:13
  • 740

POJ 1845 Sumdiv (快速分解因式+快速幂取模)

题目地址:POJ 1845 转载自:http://blog.csdn.net/lyy289065406/article/details/6648539 大致题意: 求A^B的所有约数...
  • u013013910
  • u013013910
  • 2015年01月23日 14:25
  • 641

POJ 1845 Sumdiv(逆元、分治)【真心好题啊=_=】

题目链接: POJ 1845 Sumdiv 题意: 给出A和B,求A^B的所有因子和对990取余后的值。0...
  • Ramay7
  • Ramay7
  • 2016年05月26日 00:56
  • 208

poj 1845 Sumdiv (大数幂取模)

Description Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. ...
  • Misdom_Tian_Ya
  • Misdom_Tian_Ya
  • 2014年11月18日 23:42
  • 305

poj 1845 Sumdiv 矩阵法求幂的和

题意: 给A,B,求A^B所有因子模9901的和(0 分析: 因素分解后关键是求1+p^1+p^2+....p^k的和,因为等比数列和公式涉及除法,不用乘法逆元的话不能直接用公式。设s(k+1)=p...
  • sepNINE
  • sepNINE
  • 2015年07月08日 11:40
  • 584

POJ 1845 Sumdiv(高中数学,推公式,分治)

转自bin神:http://www.cnblogs.com/kuangbin/archive/2012/08/10/2631225.htmlbin神语录(来自群acfun):   1.年轻人,多刷题...
  • Yick_Liao
  • Yick_Liao
  • 2015年12月03日 15:40
  • 306

POJ 1845 Sumdiv (快速幂+质因数+约数和公式+同余模)

Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 16109   Accepted: 3992 ...
  • Grit_ICPC
  • Grit_ICPC
  • 2015年08月17日 20:51
  • 544
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj 1845 Sumdiv(分治+快速幂)
举报原因:
原因补充:

(最多只允许输入30个字)