poj 1845 Sumdiv(分治+快速幂)

原创 2012年03月24日 02:26:23

【题目大意】:求A^B的约数和mod 9901.(0 <= A,B <= 50000000)


【解题思路】:

A^B的约数和记为S,则S=(1+p1+p1^2+...+p1^q1)*(1+p2+p2^2+....+p2^q2)*....*(1+pn+pn^2+...pn^qn);

对于上述的式子,pi代表质因子,qi代表个数。

根据二分法分治,我们又可以知道:

1+p+p^2+...+p^n=

当n为奇数,(1+p+p^2+...+p^((n+1)/2))*(1+p^((n+1)/2))

当n为偶数,(1+p+p^2+...+p^((n+1)/2)+p^((n+1)/2)*(1+p*(1+p+p^2+...+p^((n+1)/2)))

因此,我们不妨用二分分治加快速幂解决这道题


【代码】:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <cmath>
#include <string>
#include <cctype>
#include <map>
#include <iomanip>
                   
using namespace std;
                   
#define eps 1e-8
#define pi acos(-1.0)
#define inf 1<<30
#define linf 1LL<<60
#define pb push_back
#define lc(x) (x << 1)
#define rc(x) (x << 1 | 1)
#define lowbit(x) (x & (-x))
#define ll long long
#define c 9901

int prime[7711],total=0;

void isprime(){
    int i,j;
    prime[1]=1;
    for(int i=2; i*i<=7711; i++)
        for(int j=i*i; j<=7711; j+=i)
            prime[j]=1;
    for(int i=2; i<=7711; i++)
        if(!prime[i])
            prime[total++]=i;
}

ll mod_exp(ll a,ll b){
    ll m=1;
    while(b){
        if(b&1)
            m=(m%c)*(a%c)%c;
        b>>=1;
        a=(a%c)*(a%c)%c;
    }
    return m;
}

ll sum(ll p,ll k){
    if(k==1)
        return 1;
    ll t=(sum(p,k/2));
    if(k&1)
        return (t+mod_exp(p,k/2)*(1+p*t))%c;
    else
        return ((1+mod_exp(p,k/2))*t)%c;
}

int main(){
    ll a,b,ans;
    int i,k;
    isprime();
    while(~scanf("%lld%lld",&a,&b)){
        ans=1;
        for(int i=0; i<total && a>1; i++){
            k=0;
            while(a%prime[i]==0){
                k++;
                a/=prime[i];
            }
            ans=(ans*sum(prime[i],k*b+1))%c;
        }
        if(a>1)
            ans=(ans*sum(a,b+1))%c;
        printf("%lld\n",ans);
    }
    return 0;
}




相关文章推荐

(POJ - 1845)Sumdiv(分治法/费马小定理+快速幂)

Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S m...

POJ 1845 Sumdiv(数论+快速幂)

Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 19576   Accept...
  • nare123
  • nare123
  • 2016年09月19日 23:48
  • 118

POJ 1845 Sumdiv (快速幂+质因数+约数和公式+同余模)

Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 16109   Accepted: 3992 ...

POJ 1845 Sumdiv(质因数分解+快速幂+二分法求等比数列的和)

题目大意:求 A ^ B 的所有约数的和 模 9901 的值。 解题思路: 1、对A进行素因子分解得:      A  =  p1^a1  *  p2^a2  *  p3^a3  * ... ...

poj 1845 Sumdiv (同余定理,快速幂取余)

题意:求A^B的所有因子的和对9901取余后的值 如:2^3=8,8的因子有 1,2,4,8,所有和为15,取余后也是15 应用定理主要有三个: (1)整数的唯一分解定理: 任意正整数都有且...

POJ 1845 Sumdiv 快速求幂+同余+乘法逆元

题意:给定A, B,求A^B的所有因数之和,并模9901。 题解: 1: 对A进行素因子分解得      A = p1^a1 * p2^a2 * p3^a3 *...* pn^an.   ...
  • Tsaid
  • Tsaid
  • 2012年03月15日 21:03
  • 1511

poj 1845 Sumdiv (快速求幂+同余或 乘法逆元)

大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出。   解题思路: 要求有较强 数学思维 的题 应用定理主要有三个: 要求有较强 数学思维 的题 应用定理主要有三...

poj 1845 Sumdiv(数论:欧拉函数+二分求等比数列前n项和+快速幂取模)

很凶残的一道题啊... 给定一个n先用欧拉函数求出

POJ 1845 Sumdiv【同余模运算+递归求等比数列和+快速幂运算】

快速幂运算在第一次训练时候就已经遇到过,这里不赘述 同余模运算也很简单,这里也不说了,无非是(a+b)%m (a*b)%m 把m弄到里面变成(a%m+b%m)%m   (a%m*b%m)%m 今...

POJ1845 Sumdiv【快速模幂+素因子分解+等比数列+二分法】

问题链接:POJ1845 Sumdiv。 问题简述:参见上述链接。 问题分析:计算a^b的因子数,首先要对a进行因子分解,然后再进行计算。 程序说明:计算过程中用到了快速模幂函数。 题记:(略) ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj 1845 Sumdiv(分治+快速幂)
举报原因:
原因补充:

(最多只允许输入30个字)