【题目大意】:给你三个顶点,这三个点是一个正多边形上的顶点,问该正多边形的顶点有几个。
【解题思路】:三个点,三角形-->外接圆-->必定也是该凸多边形的外接圆-
设顶点数为i,我们只要知道,三角形任意两点所对应的圆心角是否是2pi/n的倍数就可以了。。。。i很小,枚举就可以了。
角度用余弦定理求
【代码】:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <cmath>
#include <string>
#include <cctype>
#include <map>
#include <iomanip>
using namespace std;
#define eps 1e-5
#define pi acos(-1.0)
#define inf 1<<30
#define linf 1LL<<60
#define pb push_back
#define lc(x) (x << 1)
#define rc(x) (x << 1 | 1)
#define lowbit(x) (x & (-x))
#define ll long long
double x[5],y[5],z[5];
double a,b,c;
inline int sig(double k) {
return k<-eps?-1:k>eps;
}
bool check(int n){
if (sig(a*n-floor(a*n+0.5))==0 && sig(b*n-floor(b*n+0.5))==0 && sig(c*n-floor(c*n+0.5))==0) return true;
else return false;
}
inline double getangle(double a,double b,double c,double d,double e,double f) {
double aa,bb,cc;
aa=sqrt((c-a)*(c-a)+(d-b)*(d-b));
bb=sqrt((e-a)*(e-a)+(f-b)*(f-b));
cc=sqrt((e-c)*(e-c)+(f-d)*(f-d));
return acos((aa*aa+bb*bb-cc*cc)/(2*aa*bb));
}
int main() {
while (1){
if (scanf("%lf%lf",&x[0],&y[0])==0) break;
else {
for (int i=1; i<=2; i++) scanf("%lf%lf",&x[i],&y[i]);
a=getangle(x[0],y[0],x[1],y[1],x[2],y[2])/pi;
b=getangle(x[1],y[1],x[2],y[2],x[0],y[0])/pi;
c=getangle(x[2],y[2],x[0],y[0],x[1],y[1])/pi;
for (int i=3; i<=1000; i++){
if (check(i)) {
cout << i << endl;
break;
}
}
}
}
return 0;
}