Bellman-Ford算法详讲

转载 2011年09月19日 21:56:40

转载链接:http://www.wutianqi.com/?p=1912


Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的。

这时候,就需要使用其他的算法来求解最短路径,Bellman-Ford算法就是其中最常用的一个。该算法由美国数学家理查德贝尔曼(Richard Bellman, 动态规划的提出者)和小莱斯特福特(Lester Ford)发明。

适用条件&范围:

单源最短路径(从源点s到其它所有顶点v);

有向图&无向图(无向图可以看作(u,v),(v,u)同属于边集E的有向图);

边权可正可负(如有负权回路输出错误提示);

差分约束系统;

Bellman-Ford算法的流程如下:
给定图G(V, E)(其中VE分别为图G的顶点集与边集),源点s数组Distant[i]记录从源点s到顶点i的路径长度,初始化数组Distant[n], Distant[s]0

以下操作循环执行至多n-1次,n为顶点数:
对于每一条边e(u, v),如果Distant[u] + w(u, v) < Distant[v],则另Distant[v] = Distant[u]+w(u, v)w(u, v)为边e(u,v)的权值;
若上述操作没有对Distant进行更新,说明最短路径已经查找完毕,或者部分点不可达,跳出循环。否则执行下次循环;

为了检测图中是否存在负环路,即权值之和小于0的环路。对于每一条边e(u, v),如果存在Distant[u] + w(u, v) < Distant[v]的边,则图中存在负环路,即是说改图无法求出单源最短路径。否则数组Distant[n]中记录的就是源点s到各顶点的最短路径长度。

可知,Bellman-Ford算法寻找单源最短路径的时间复杂度为O(V*E).

BellmanFord算法可以大致分为三个部分
第一,初始化所有点。每一个点保存一个值,表示从原点到达这个点的距离,将原点的值设为0,其它的点的值设为无穷大(表示不可达)。
第二,进行循环,循环下标为从1n1n等于图中点的个数)。在循环内部,遍历所有的边,进行松弛计算。
第三,遍历途中所有的边(edgeuv)),判断是否存在这样情况:
dv) > d (u) + w(u,v)
则返回false,表示途中存在从源点可达的权为负的回路。
 
之所以需要第三部分的原因,是因为,如果存在从源点可达的权为负的回路。则 应为无法收敛而导致不能求出最短路径。 

测试代码如下:(下面为有向图的Bellman-Ford算法。。。。。)

#include<iostream>
#include<cstdio>
using namespace std;

#define MAX 0x3f3f3f3f
#define N 1010
int nodenum, edgenum, original; //点,边,起点

typedef struct Edge //边
{
	int u, v;
	int cost;
}Edge;

Edge edge[N];
int dis[N], pre[N];

bool Bellman_Ford()
{
	for(int i = 1; i <= nodenum; ++i) //初始化
		dis[i] = (i == original ? 0 : MAX);
	for(int i = 1; i <= nodenum - 1; ++i)
		for(int j = 1; j <= edgenum; ++j)
			if(dis[edge[j].v] > dis[edge[j].u] + edge[j].cost) //松弛(顺序一定不能反~)
			{
				dis[edge[j].v] = dis[edge[j].u] + edge[j].cost;
				pre[edge[j].v] = edge[j].u;
			}
			bool flag = 1; //判断是否含有负权回路
			for(int i = 1; i <= edgenum; ++i)
				if(dis[edge[i].v] > dis[edge[i].u] + edge[i].cost)
				{
					flag = 0;
					break;
				}
				return flag;
}

void print_path(int root) //打印最短路的路径(反向)
{
	while(root != pre[root]) //前驱
	{
		printf("%d-->", root);
		root = pre[root];
	}
	if(root == pre[root])
		printf("%d\n", root);
}

int main()
{
	scanf("%d%d%d", &nodenum, &edgenum, &original);
	pre[original] = original;
	for(int i = 1; i <= edgenum; ++i)
	{
		scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].cost);
	}
	if(Bellman_Ford())
		for(int i = 1; i <= nodenum; ++i) //每个点最短路
		{
			printf("%d\n", dis[i]);
			printf("Path:");
			print_path(i);
		}
	else
		printf("have negative circle\n");
	return 0;
}

测试数据:

4 6 1
1 2 20
1 3 5
4 1 -200
2 4 4
4 2 4
3 4 2

和:

4 6 1
1 2 2
1 3 5
4 1 10
2 4 4
4 2 4
3 4 2


[算法系列之二十九]Bellman-Ford最短路径算法

单源最短路径给定一个图,和一个源顶点src,找到从src到其它所有所有顶点的最短路径,图中可能含有负权值的边。Dijksra的算法是一个贪婪算法,时间复杂度是O(VLogV)(使用最小堆)。但是迪杰斯...
  • SunnyYoona
  • SunnyYoona
  • 2015年04月23日 15:15
  • 3843

Dijkstra、Bellman-Ford及Spfa算法思想对比

Dijkstradijkstra算法本质上算是贪心的思想,每次在剩余节点中找到离起点最近的节点放到队列中,并用来更新剩下的节点的距离,再将它标记上表示已经找到到它的最短路径,以后不用更新它了。这样做的...
  • mmy1996
  • mmy1996
  • 2016年08月16日 23:10
  • 5745

浅谈路径规划算法之Bellman-Ford算法

最近在研究AGV系统的调度算法,为了实现多AGV小车的运行,给每一个AGV小车规划一条最优路径,对比了Bellman-Ford算法、SPFA算法、Dijkstra算法、Floyd算法和A*算法的优缺点...
  • AK_Lady
  • AK_Lady
  • 2017年04月12日 20:35
  • 899

算法笔记_070-BellmanFord算法简单介绍(Java)

目录 1 问题描述 2 解决方案 2.1 具体编码   1 问题描述 何为BellmanFord算法? BellmanFord算法功能:给定一个加权连通图,选取一个顶点,称为起点...
  • hehehaha1123
  • hehehaha1123
  • 2017年03月20日 14:59
  • 856

最短路径算法(2)—Bellman-Ford(贝尔曼-福特)算法

Source: http://www.wutianqi.com/?p=1912
  • c8481892
  • c8481892
  • 2016年09月20日 14:47
  • 552

最短路径(三)—Bellman-Ford算法(解决负权边)

前两节我们写了Floyd-Warshall算法http://blog.csdn.net/wtyvhreal/article/details/43315705和 Dijkstra算法http://bl...
  • wtyvhreal
  • wtyvhreal
  • 2015年02月03日 15:45
  • 4048

单源最短路径之Bellman-Ford算法

今天介绍一种计算单源最短路径的算法Bellman-Ford算法,对于图G=(V,E)来说,该算法的时间复杂度为O(VE),其中V是顶点数,E是边数。Bellman-Ford算法适用于任何有向图,并能报...
  • Ivan_zgj
  • Ivan_zgj
  • 2016年06月01日 13:19
  • 1363

bellman ford 算法 判断是否存在负环

Flyer 目录视图摘要视图订阅 微信小程序实战项目——点餐系统        程序员11月书讯,评论得书啦        ...
  • hang__xiu2016acm
  • hang__xiu2016acm
  • 2016年11月26日 21:19
  • 1754

关于Bellman-Ford算法的理解

Bellman-Ford算法,对于一个有向图,可以分别求出图中所有点到一个确定点的最短距离。 基本思想就是枚举每一个点,判断通过该边能否使得其起点到原点的距离变短。 如:   对于边3-2,它可以使3...
  • qq_36306833
  • qq_36306833
  • 2017年02月03日 14:43
  • 610

算法学习 - Bellman-Ford(贝尔曼福特)算法(C++实现)

BellmanFord算法 优点缺点 实现BellmanFord算法Bellman-Ford算法是一个单源点最短路径算法,这个算法的目的就是找到整个图,到起始节点(自己定的)最短的路径和路径长度。优点...
  • chenfs1992
  • chenfs1992
  • 2015年03月27日 00:38
  • 4436
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Bellman-Ford算法详讲
举报原因:
原因补充:

(最多只允许输入30个字)