NYOJ-3 多边形重心问题【计算几何】

本文介绍了一个计算几何问题的解决方法,涉及向量的点积与叉积、多边形面积计算、三角形面积求法及多边形重心的确定等知识点,并提供了完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接: http://acm.nyist.net/JudgeOnline/problem.php?pid=3

解题思路:

一个简单的计算几何。但是需要用到一些高中学到的向量和物理知识。我也是看了1个多小时的基础知识才A掉的。


需要知道的知识点有:

1.叉积和点积的区别和它们引进的用途。

既然是向量,它得定义大小和方向,所以不同于常规的数字。

点积和叉积都是为了解决实际意义引进的。

为了解决已知两有向线段,求以它们为邻边的平行四边形的面积的问题,引入了点积。因为点积的结果是面积大小,所以它只是一个数字,没有方向。

叉积的产生是为了产生新的向量,至于它的方向的规定,是为了和笛卡尔坐标系一致,我们判断两个向量叉积的方向需要用到右手螺旋定则,如果A X B,则A、B向量叉积的方向就是四指从A到B,大拇指方向就是叉积方向。

2.多边形面积怎么求。

分割成多个三角形即可

3.三角形面积用叉积怎么求。

x2*y1-x1y2

4.重心是什么。

google一下就OK了

5.重心和面积以及坐标的关系。

把每个三角形看作一个质量为面积的点,然后求出这个三角形X坐标平均值,相乘后得到这个点

将所有点同样处理后相加,最终结果除以多边形面积就是多边形重心的X坐标。

Y同理求得。


代码如下:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;

#define INF 0.0000001
const int N = 10010;

struct point
{
	double x, y;
	point():x(0),y(0){}
}p[N];

int main()
{
	int ncase;
	scanf("%d", &ncase);
	while(ncase--)
	{
		int n;
		double result = 0;
		point ans;
		scanf("%d", &n);
		for(int i = 0; i < n; ++i)
			scanf("%lf%lf", &p[i].x, &p[i].y);
		for(int i = 1; i <= n; ++i)
		{
			double temp = (p[i % n].x * p[i -1].y - p[i % n].y * p[i -1].x) / 2.0;
			result += temp;
			ans.x += temp * (p[i % n].x + p[i - 1].x) / 3.0;
			ans.y += temp * (p[i % n].y + p[i - 1].y) / 3.0;
		}
		if(fabs(result - 0) < INF)
			puts("0.000 0.000");
		else
			printf("%.3lf %.3lf\n", fabs(result), (ans.x + ans.y) / result); //result取绝对值
	}
	return 0;
}



评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值