题目
大意就是求在a<=x<=b,c<=y<=d,满足gcd(x,y)是k的(x,y)的对数。
分析:令g(n,m,k)表示在1<=x<=n,1<=y<=m,满足gcd(x,y)是k的(x,y)的对数。
那么由容斥原理可得
ans=g(c,d,k)−g(a−1,d,k)−g(b,c−1,k)+g(a−1,c−1,k)
。
1<=x<=n,1<=y<=m,满足gcd(x,y)是k的(x,y)的对数也等价于1<=x<=n/k,1<=y<=m/k,(x,y)互质的对数,即
g(n,m,k)=g(n/k,m/k,1)
令f(i)表示满足gcd(x,y)=i时(x,y)的对数,F(i)表示满足i|gcd(x,y)的(x,y)的对数,显然 F(i)=⌊ni⌋⌊mi⌋ 。
根据 莫比乌斯反演定理
F(i)=∑i|df(d)=>f(i)=∑i|dμ(di)F(d)=∑i|dμ(di)⌊nd⌋⌊md⌋
当i=1时, f(1)=∑min(n,m)d=1μ(d)⌊nd⌋⌊md⌋ 。
由于 ⌊ni⌋ 的取值最多只有 2n√ 个(这个很容易证明:在 nsqrt(n)+1<i<=n 时, ⌊ni⌋=⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪12........sqrt(n)n2<i<=nn3<i<=n2nsqrt(n)+1<i<=nsqrt(n) ,到这里已经有sqrt(n)个取值了,还有sqrt(n)个i,即使每一个i都对应一个不同的 ⌊ni⌋ ,也只有 2n√ 个取值),我们算出 μ 的前缀和sum,然后只需要O( 2(n√+m−−√) )的时间(即分块优化)回答每次询问。
计算f(1)的代码如下
int cal(int n,int m){
int t=min(m,n),last,ret=0,i;
for(i=1;i<=t;i=last+1){
last=min(n/(n/i),m/(m/i));
ret+=(sum[last]-sum[i-1])*(n/i)*(m/i);
}
return ret;
}
解释一下,若n/i=t,则t是满足a*i<=n的a的最大值,则n/(n/i)就是满足商为n/i的i的最大值。
这道题的代码
#include<cstdio>
#include<algorithm>
using namespace std;
#define MAXN 50000
int a,b,c,d,k,p[MAXN+10],pcnt,mu[MAXN+10],sum[MAXN+10],ans,n;
bool f[MAXN+10];
void Read(int &x){
char c;
while(c=getchar(),c!=EOF)
if(c>='0'&&c<='9'){
x=c-'0';
while(c=getchar(),c>='0'&&c<='9')
x=x*10+c-'0';
ungetc(c,stdin);
return;
}
}
void prepare(){
int i,j;
mu[1]=sum[1]=1;
for(i=2;i<=MAXN;i++){
if(!f[i])
p[++pcnt]=i,mu[i]=-1;
for(j=1;p[j]*i<=MAXN;j++){
f[p[j]*i]=1;
if(i%p[j]==0){
mu[p[j]*i]=0;
break;
}
mu[p[j]*i]=-mu[i];
}
sum[i]=sum[i-1]+mu[i];
}
}
int cal(int n,int m){
int t=min(m,n),last,ret=0,i;
for(i=1;i<=t;i=last+1){
last=min(n/(n/i),m/(m/i));
ret+=(sum[last]-sum[i-1])*(n/i)*(m/i);
}
return ret;
}
void solve(int a,int b,int c,int d,int k){
a--,c--;
a/=k,b/=k,c/=k,d/=k;
ans=cal(b,d)-cal(a,d)-cal(b,c)+cal(a,c);
}
int main()
{
Read(n);
prepare();
while(n--){
Read(a),Read(b),Read(c),Read(d),Read(k);
solve(a,b,c,d,k);
printf("%d\n",ans);
}
}