浅谈gibbs sampling(LDA实验)

本文探讨了Gibbs Sampling在主题模型LDA中的使用,旨在找到最佳的文档-主题分布和主题-词分布。通过计算概率P(wi|topic) * P(topic|doc),并调整超参数α和β,可以影响文档和词汇倾向于特定主题的程度。实验虽然未达到论文结果,但揭示了参数调整如何影响主题集中度。代码和相关讨论可供进一步研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先把问题描述一下:

如果我们已知了topic内的每个词的词频,比如下图中topic1 中money 2 次,loan 3次...那么任意给一个文档我们可以对里面每一个词算一个产生这个词的概率即 P(w=wi|t=tj)

如下图,doc1 中的money 百分之百的来自于topic1 。doc2 中的词用topic1 无法全部解释,必须借助topic2 。

但现在问题是,如果我们只有一堆文档,Doc1,Doc2,Doc3,且拍脑袋的大概知道会有2个topic,那么怎么产生着两个topic才能最好的解释这三个文档呢?

       

因此我们要计算一个概率,即文档中的这个词活脱脱的呈现在我们面前的概率P(wi),我们尽可能想办法让这个概率最大。就好像XX厂长成功了,我们要罗织功劳,让XX厂长成功这件事,最可信。

 那么这个概率计算的方法如下图,简单来说就是 P(wi) = P(wi|topic) * P(topic|doc)*p(doc),我们省略p(doc)【求解没有意义】于是得到下面公式。




现在问题又来了,如果给定一个文档di的一个词wi,他最大可能是来自

### Gibbs Sampling Algorithm in Machine Learning Gibbs采样是一种用于马尔可夫链蒙特卡罗(MCMC)方法中的重要技术,广泛应用于贝叶斯统计和机器学习领域。该算法通过迭代更新变量的概率分布来近似复杂的多维概率分布。 #### 原理 在一个含有多个随机变量的联合概率模型中,直接计算条件概率可能非常困难。然而,在给定其他所有变量的情况下,某些单个变量的条件概率可以更容易地被估计出来。基于这一观察,Gibbs采样采用逐个抽取的方式逐步构建样本序列: 对于每一个维度上的参数θ_i,当已知其余n-1个维度的具体取值时,可以从对应的条件分布p(θ_i|θ_(-i))中抽取出新的样本作为下一个状态的一部分[^2]。 ```python def gibbs_sampling(num_samples, initial_values, conditionals): samples = [initial_values] for _ in range(num_samples): new_sample = list(samples[-1]) for i in range(len(new_sample)): current_conditional = conditionals[i] # Sample from conditional distribution p(theta_i | theta_{-i}) new_value = np.random.choice( possible_values, p=current_conditional(new_sample[:i] + new_sample[i+1:]) ) new_sample[i] = new_value samples.append(new_sample) return samples[1:] ``` 此过程重复多次之后,产生的样本集能够很好地代表原始复杂分布下的数据特征。 #### 实现方法 上述伪代码展示了如何实现基本形式的Gibbs采样器。实际应用中还需要考虑诸如收敛诊断、混合速度优化等问题。此外,针对特定类型的模型结构(如高斯混合模型),可能存在更高效的变体版本。 #### 应用场景 Gibbs采样的灵活性使其适用于各种不同的场合,特别是在处理具有隐含变量或缺失数据的问题上表现出色。典型的应用案例包括但不限于: - **主题建模**:LDA(Latent Dirichlet Allocation)利用Gibbs采样来进行文档集合的主题推断; - **图像修复**:通过对损坏像素周围的邻域信息进行推理填补丢失部分; - **基因表达分析**:帮助识别不同条件下生物样品之间的差异表达模式;
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值