图事-matlab之神经网络分类

原创 2015年07月06日 16:14:36

工具是matlab,excel 

目的: p1数据集是10类,p2数据集是01类  ,训练一个神经网络将这两个数据集区分开。以后的测试数据输入神经网络后能分到对应的类。

一 训练数据准备  

                  x1             x2
   y1             y2  


ps:从excle中读取数据p1=xlsread('data.xlsx','sheet1','A2:B11')其他类似. 

二 数据转换


(1 )p1和p2两组数据合并  p=[p1 ;p2]


将15*2的矩阵转置,p=p' 

p1和p2对应输出的目标y1,y2,合并并转置成goal


此时输入数据是p,目标是goal,开始构建BP神经网络

三 BP神经网络

   (1)创建一个前向反馈后向传播神经网络-即BP神经网络  
    net=newff(pr,[3,2],{'logsig','logsig'});  
    %设置训练参数  
    net.trainParam.show = 10;  
    net.trainParam.lr = 0.05;  
    net.trainParam.goal = 1e-10;  
    net.trainParam.epochs = 50000;  

   view(net) 显示神经网络结构:


    (2)训练网络  
    net = train(net,p,goal); 

    (3)测试网络

测试数据 x=[1.24 1.80;1.28 1.84;1.40 2.04]';  

    %测试训练结果,,显示混合矩阵  
    y1=sim(net,p1') ;plotconfusion(y1,p1')
    y2=sim(net,p2')  ;plotconfusion(y2,p2')
    y=sim(net,x)  ;plotconfusion(y,x)

输入x,网络输出y,混合矩阵


end!



版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

用matlab训练数字分类的深度神经网络Training a Deep Neural Network for Digit Classification

This example shows how to use Neural Network Toolbox™ to train a deep neural network to classify ima...

BP神经网络在肺癌分类中应用_附matlab代码

人工神经网络是用来模拟人脑结构及智能特点的一个前沿研究领域,它的一个重要特点是通过网络学习达到其输出与期望输出结果,具有很强的自学习、自适应、鲁棒性、容错性及存储记忆的能力。人工神经网络系统评价方法以...

数据挖掘---分类算法之神经网络算法BPN实践

有了上篇的基本理论之后,我们可以尝试去代码实现基本的一个BPN算法。          具体的算法代码,后面给出。就像前面说过的,有几个东西需要调节注意的,学习率和惯性因,初始权值和阈值,收敛误差界值...

Python图像处理(14):神经网络分类器

在opencv中支持神经网络分类器,本文尝试在python中调用它。 和前面的贝叶斯分类器一样,神经网络也遵循先训练再使用的方式,我们直接在贝叶斯分类器的测试代码上做简单修改,完成两类数据点的分类。
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)