Sigmod/Softmax变换

http://blog.csdn.net/pipisorry/article/details/77816624Logistic/Softmax变换sigmoid函数/Logistic 函数取值范围为(0,1),它可以将一个实数映射到(0,1)的区间,可以用来做二分类。sigmoid 的导数表达式为: sigmoid 原函数及导数图形如下:Note: 从导数表达式可知,logit梯度最大为0.2...
阅读(162) 评论(0)

神经网络中的激活函数

http://blog.csdn.net/pipisorry/article/details/52102805激活函数神经网络神经元中,输入的 inputs 通过加权,求和后,还被作用了一个函数,这个函数就是激活函数 Activation Function。  为什么要用激活函数神经网络中激活函数的主要作用是提供网络的非线性建模能力,如不特别说明,激活函数一般而言是非线性函数。假设一个示例神经网络...
阅读(720) 评论(0)

神经网络neural network

http://blog.csdn.net/pipisorry/article/details/76095118前馈神经网络:FFNN模型(feedforward neural network)固定基函数的线性组合构成的回归模型和分类模型。我们看到,这些模型具有一些有用的分析性质和计算性质,但是它们的实际应用被维数灾难问题限制了。为了将这些模型应用于大规模的问题,有必要根据数据调节基函数。一种方法是...
阅读(1735) 评论(9)

回归的线性模型

http://blog.csdn.net/pipisorry/article/details/73770637线性基函数回归模型基函数线性回归模型的最简单的形式也是输入变量的线性函数。但是,通过将一组输入变量的非线性函数进行线性组合,我们可以获得一类更加有用的函数,被称为基函数( basis function )。这样的模型是参数的线性函数,这使得其具有一些简单的分析性质,同时关于输入变量是非线性...
阅读(272) 评论(0)

平面几何和立体几何

http://blog.csdn.net/pipisorry/article/details/73294222平面几何余弦定理和勾股定理余弦定理和勾股定理的几何图形解释[震惊!余弦定理和勾股定理竟然有这样的关系]点间距离、点线距离、线间距离两点间的距离已知平面上两点P1(x1,y1), P2(x2,y2)。分别过两点作x轴 和 y轴的垂线,在Rt△P1 QP2中,|P1 P2|2 = |P1 Q|...
阅读(418) 评论(0)

算法:位运算

http://blog.csdn.net/pipisorry/article/details/70318778位操作基础位操作是程序设计中对位模式或二进制数的一元和二元操作。lz所以3进制在一般计算机应该不能进行位操作吧。基本的位操作符有与、或、异或、取反、左移、右移这6种,它们的运算规则如下所示:符号 描述 运算规则&       与两个位都为1时,结果才为1|   或    两个位都为0时,结...
阅读(395) 评论(0)

三个盒子装金币问题

http://blog.csdn.net/pipisorry/article/details/72859426问题有三个盒子,只有 一个里面装有金币。你随机抽取一个;然后有人告诉你,剩下的两个盒子中,他随机的打开了一个,发现里面是空的;然后他问你,要不要把你的盒子和另一个未打开的盒子交换?解答这个问题中最关键的焦点就是那个既定的空盒子中含有金币的概率到底是不是三分之一的问题。 这个问题最初是在某B...
阅读(527) 评论(0)

数据散布的度量

http://blog.csdn.net/pipisorry/article/details/72820982考察评估数值数据散布或发散的度量。这些度量包括极差、分位数、四分位数、百分位数和四分位数极差。五数概括可以用盒图显示,它对于识别离群点是有用的。方差和标准差也可以指出数据分布的散布。集中趋势集中趋势(central tendency)在统计学中是指一组数据向某一中心值靠拢的程度,它反映了一...
阅读(346) 评论(0)

时钟问题

http://blog.csdn.net/pipisorry/article/details/72764547时钟问题1.行程问题中时钟的标准制定;2.时钟的时针与分针的追及与相遇问题的判断及计算;3.时钟的周期问题。时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者...
阅读(204) 评论(0)

格雷码Gray Code

http://blog.csdn.net/pipisorry/article/details/72356418格雷码简介  在一组数的编码中,若任意两个相邻的代码只有一位二进制数不同,则称这种编码为格雷码(Gray Code),另外由于最大数与最小数之间也仅一位数不同,即“首尾相连”,因此又称循环码或反射码。格雷码(Gray Code)又称Grey Code、葛莱码、格莱码、戈莱码、循环码、反射二...
阅读(495) 评论(0)

C++:函数指针

http://blog.csdn.net/pipisorry/article/details/72458168函数指针函数存放在内存的代码区域内,它们同样有地址。如果我们有一个int test(int a)的函数,那么,它的地址就是函数的名字,如同数组的名字就是数组的起始地址。1、函数指针的定义方式:data_types (*func_pointer)( data_types arg1, data...
阅读(233) 评论(0)

C++:模板

http://blog.csdn.net/pipisorry/article/details/72353250C++ 模板模板是泛型编程的基础,泛型编程即以一种独立于任何特定类型的方式编写代码。模板是创建泛型类或函数的蓝图或公式。库容器,比如迭代器和算法,都是泛型编程的例子,它们都使用了模板的概念。每个容器都有一个单一的定义,比如 向量,我们可以定义许多不同类型的向量,比如 vector 或...
阅读(304) 评论(0)

C++ 函数

http://blog.csdn.net/pipisorry/article/details/72353172定义函数C++ 中的函数定义的一般形式如下: return_type function_name( parameter list ){ body of the function}在 C++ 中,函数由一个函数头和一个函数主体组成。下面列出一个函数的所有组成部分:返回类型:一个函数可以返...
阅读(247) 评论(0)

Python模块:bisect二分算法模块

http://blog.csdn.net/pipisorry/article/details/72307432Bisect模块简介Python 的列表(list)内部实现是一个数组,也就是一个线性表。在列表中查找元素可以使用 list.index() 方法,其时间复杂度为O(n)。对于大数据量,则可以用二分查找进行优化。二分查找要求对象必须有序,其基本原理如下:1.从数组的中间元素开始,如果中间元...
阅读(307) 评论(0)

Linux: 系统设置与备份策略

http://blog.csdn.net/pipisorry/article/details/72123258系统基本设置网络设置 (手动设置与DHCP自动取得)日期与时间设置语系设置LANG 与 locale 的指令能够查询目前的语系数据与变量, /etc/locale.conf 其实就是语系的配置文件。 此外,系统的语系与你目前软件的语系数据可能是可以不一样的!如果想要知道目前“系统语系”的话...
阅读(371) 评论(0)

Linux:网络安全与主机基本防护:限制端口, 网络升级与 SELinux

http://blog.csdn.net/pipisorry/article/details/72123815系统基本设置网络设置 (手动设置与DHCP自动取得)目前的主流网卡为使用以太网络协定所开发出来的以太网卡 (Ethernet),因此我们 Linux 就称呼这种网络接口为 ethN (N 为数字)。 举例来说,机上面有一张以太网卡,因此主机的网络接口就是 eth0 (第一张为 0 号开始)...
阅读(341) 评论(1)

Linux:Linux常用网络指令

http://blog.csdn.net/pipisorry/article/details/72123888网络参数设定使用的指令ifconfig :查询、设定网络卡与 IP 网域等相关参数;ifup, ifdown:这两个档案是 script,透过更简单的方式来启动网络接口;route :查询、设定路由表 (route table)ip :复合式的指令, 可...
阅读(340) 评论(0)

信息论:熵与互信息

http://blog.csdn.net/pipisorry/article/details/51695283这篇文章主要讲:熵, 联合熵(joint entropy),条件熵(conditional entropy),相对熵(relative entropy,KL 距离),互信息(mutual information),交叉熵(cross entropy),困惑度(perplexity)。熵/信...
阅读(16543) 评论(0)

knowledge_based topic model - AMC

http://blog.csdn.net/pipisorry/article/details/43271429 ABSTRACT         Topic modeling has been widely used to mine topics from documents. However,a key weakness of topic modeling is that it...
阅读(1613) 评论(1)

主题模型TopicModel:隐含狄利克雷分布LDA

http://blog.csdn.net/pipisorry/article/details/42649657主题模型LDA简介隐含狄利克雷分布简称LDA(Latent Dirichlet allocation),是一种主题模型,它可以将文档集中每篇文档的主题按照概率分布的形式给出。同时它是一种无监督学习算法,在训练时不需要手工标注的训练集,需要的仅仅是文档集以及指定主题的数量k即可。此外LDA的...
阅读(13619) 评论(4)
566条 共29页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:2446816次
    • 积分:24484
    • 等级:
    • 排名:第264名
    • 原创:531篇
    • 转载:30篇
    • 译文:5篇
    • 评论:238条
    Welcome to 皮皮blog~

    博客专栏
    最新评论