NLP
文章平均质量分 87
-柚子皮-
╰☆ゞ不染纤尘,不忘初心ゞ☆╮
展开
-
注意力机制之Pointer-Generator Networks
一个应用是自动文本摘要,即自动地把一段文字压缩为它对应的较短的文本的任务。文本摘要的主要方式分为两种,一种是抽取式(extractive),另一种是生成式(abstractive)。抽取式是根据词语重要性、句子重要性排序,抽取出重要度高的句子,从而形成摘要。主要是对文本的选择,过程相对更容易,但是对于复杂的文本时,很难仅仅通过选择文本来形成摘要,如小说。生成式则是通过自然语言处理,输出简洁、流畅、保留关键信息,更能模拟人进行摘要的过程,涉及到生成文本,过程更为复杂。原创 2017-12-19 21:33:07 · 3705 阅读 · 1 评论 -
深度学习:transformer模型
Google于2017年6月发布在arxiv上的一篇文章《Attention is all you need》,提出解决sequence to sequence问题的transformer模型,用全attention的结构代替了lstm,抛弃了之前传统的encoder-decoder模型必须结合cnn或者rnn的固有模式,只用attention,可谓大道至简。文章的主要目的是在减少...原创 2018-12-10 21:59:24 · 58457 阅读 · 8 评论 -
LLM:大模型的正则化
主流大模型使用的Normalization主要有三类,分别是Layer Norm,RMS Norm,以及Deep Norm。小模型的正则化参考:l1l2正则和dropout正则化[LN和BN归一化 [原创 2023-05-30 22:48:58 · 3036 阅读 · 0 评论 -
LLM:参数有效性学习——LoRA模型
随着模型规模的不断扩大,微调模型的所有参数(所谓full fine-tuning)的可行性变得越来越低。以GPT-3的175B参数为例,每增加一个新领域就需要完整微调一个新模型,代价和成本很高。为解决微调大规模语言模型到不同领域和任务的挑战,已有多种方案,比如部分微调、使用adapters和prompting。原创 2023-05-31 22:43:14 · 2180 阅读 · 0 评论 -
NLP:文本预处理总览
3 对于整个文本,计算所有n-gram序列的平均概率值。如果平均概率值低于某个阈值,则可以将其视为低质量内容。使用n-gram语言模型对文本进行评估,从而过滤掉低质量的内容。2 使用已经训练好的n-gram语言模型对每个n-gram序列进行评分,得到一个概率值。需要注意的是,选择合适的n值和阈值是非常重要的,需要根据具体应用场景进行调整。1 将文本分成n-gram序列,其中n是一个整数。例如,3-gram模型估计4个单词序列的概率,原创 2023-05-30 22:28:06 · 487 阅读 · 0 评论 -
深度文本匹配模型:ESIM
ESIM,简称 “Enhanced LSTM for Natural Language Inference“,一种专为自然语言推断而生的加强版 LSTM。ESIM模型主要是用来做文本推理的,给定一个前提premise pp 推导出假设hypothesis hh,其损失函数的目标是判断pp与hh是否有关联,即是否可以由pp推导出hh,因此,该模型也可以做文本匹配,只是损失函数的目标是...原创 2019-07-14 22:01:26 · 324 阅读 · 1 评论 -
中文分词:正向最大匹配与逆向最大匹配
正向(前向)最大匹配与逆向(后向)最大匹配。所谓词典正向最大匹配就是将一段字符串进行分隔,其中分隔 的长度有限制,然后将分隔的子字符串与字典中的词进行匹配,如果匹配成功则进行下一轮匹配,直到所有字符串处理完毕,否则将子字符串从末尾去除一个字,再进行匹配,如此反复。示例说明示例1:对字符串:“研究生命的起源”进行分词。假定我们的字典中的相关内容如下:研究研究生...原创 2020-04-15 00:36:36 · 7985 阅读 · 0 评论 -
深度学习:语言模型的评估标准
http://blog.csdn.net/pipisorry/article/details/78677580 语言模型的评估主要measure the closeness,即生成语言和真实语言的近似度。 Classification accuracy provides additional information about the po原创 2017-11-30 17:03:38 · 2796 阅读 · 1 评论 -
最大熵模型The Maximum Entropy:模型
http://blog.csdn.net/pipisorry/article/details/52789149最大熵模型相关的基础知识[概率论:基本概念CDF、PDF ]熵定义为: [信息论:熵与互信息 ][最优化方法:拉格朗日乘数法 ][参数估计:贝叶斯思想和贝叶斯参数估计 ][参数估计:最大似然估计MLE ]皮皮blog最大熵原理和思想 ...原创 2016-10-11 17:09:52 · 9226 阅读 · 9 评论 -
中文句法分析
中文语法http://中文语法音节...词词是由语素组成的最小的造句单位。从构成方式来看,可以分成:单纯词和合成词。从词性来看,可以分成:实词和虚词。原创 2020-04-15 00:26:09 · 10702 阅读 · 1 评论 -
LTP语法分析
POS词性标注解释Tag DescriptionExamplea adjective美丽b other noun-modifier大型, 西式c conjunction连词和, 虽然d adverb 很e exclamation惊叹词哎g morpheme形态素; 词素茨, 甥h prefix 阿, 伪i idiomidiom原创 2015-12-15 00:50:17 · 3433 阅读 · 0 评论 -
python中文分词工具:结巴分词jieba
http://blog.csdn.net/pipisorry/article/details/45311229结巴分词jieba特点 支持三种分词模式: 精确模式,试图将句子最精确地切开,适合文本分析; 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义; 搜索引擎模式,在精确模式的基础上,对长词再次切分...原创 2015-04-27 15:39:36 · 9621 阅读 · 0 评论 -
HMM:隐马尔科夫模型 - 预测和解码
http://blog.csdn.net/pipisorry/article/details/50731584观察序列生成计算观察序列的概率(Finding the probability of an observed sequence) 给定隐马尔科夫模型,也就是在模型参数(pi, A, B)已知的情况下,我们想找到观察序列的概率。还是考虑天气这个例子,我们有一个用来描述天气及与它...原创 2016-02-24 16:09:28 · 5267 阅读 · 0 评论 -
HMM:隐马尔科夫模型 - 学习
http://blog.csdn.net/pipisorry/article/details/50722376隐马尔科夫模型的三个问题例子举个常见的例子来引出下文,同时方便大家理解!比如我在不同天气状态下去做一些事情的概率不同,天气状态集合为{下雨,阴天,晴天},事情集合为{宅着,自习,游玩}。假如我们已经有了转移概率和输出概率,即P(天气A|天气B)和P(事情a|天气A)的概率都已知...原创 2016-02-23 13:22:50 · 4484 阅读 · 1 评论 -
HMM:隐马尔可夫模型 - 表示
http://blog.csdn.net/pipisorry/article/details/50722178隐马尔可夫模型Hidden Markov Models 隐马尔可夫模型(Hidden Markov Models, HMM)描述由一个隐藏的马尔可夫链随机生成的不可观测的状态序列,再由各个状态生成一个观测而产生观测随机序列的过程,属于生成模型。HMM(隐马尔可夫模型)...原创 2016-02-23 12:37:53 · 26643 阅读 · 0 评论 -
马尔科夫模型 Markov Model
http://blog.csdn.net/pipisorry/article/details/46618991生成模式(Generating Patterns)1、确定性模式(Deterministic Patterns):确定性系统 考虑一套交通信号灯,灯的颜色变化序列依次是红色-红色/黄色-绿色-黄色-红色。这个序列可以作为一个状态机器,交通信号灯的不同状态都紧跟着上一个状态。...原创 2015-06-24 10:34:20 · 119549 阅读 · 3 评论 -
深度学习:词嵌入之word2vec
http://blog.csdn.net/pipisorry/article/details/76147604word2vec简介 深度学习在自然语言处理中第一个应用:训练词嵌入。Google 的 Tomas Mikolov 在《Efficient Estimation of Word Representation in Vector Space》和《Distributed ...原创 2017-07-26 15:24:57 · 10124 阅读 · 1 评论 -
最大熵模型The Maximum Entropy:学习
http://blog.csdn.net/pipisorry/article/details/52791036最大熵模型的学习最大熵模型具体形式的推导+参数w的学习。根据[最大熵模型The Maximum Entropy:模型]最大熵模型的形式如下:最大熵模型学习最大熵模型学习的思路学习过程的具体推导Note: 通过交换极大极小位置,即得其对偶问题...原创 2016-10-11 20:07:31 · 5204 阅读 · 0 评论 -
Stanford Parser的使用——进行词法语法分析
http://blog.csdn.net/pipisorry/article/details/42976457stanford-parser的使用1、到斯坦福官方网站http://nlp.stanford.edu/software/lex-parser.shtml下载软件包,解压。2、在eclipse中新建一个java project,把解压得到根目录下的sta原创 2015-01-21 20:44:01 · 23714 阅读 · 0 评论