当前搜索:

递推关系中的数列通项

http://blog.csdn.net/pipisorry/article/details/78142983普通方法叠加法/叠乘法公式法阶差法待定系数法辅助数列法归纳、猜想倒数法[求解数列通项公式的常用方法]某小皮特征方程法(一阶线性递推式)设已知数列的项满足,其中求这个数列的通项公式?特征方程法:针对问题中的递推关系式作出一个方程称之为特征方程;借助这个特征方程的根快速求解通项公式.定理1:设...
阅读(279) 评论(0)

Sigmod/Softmax变换

http://blog.csdn.net/pipisorry/article/details/77816624Logistic/Softmax变换sigmoid函数/Logistic 函数取值范围为(0,1),它可以将一个实数映射到(0,1)的区间,可以用来做二分类。sigmoid 的导数表达式为: sigmoid 原函数及导数图形如下:Note: 从导数表达式可知,logit梯度最大为0.2...
阅读(830) 评论(0)

平面几何和立体几何

http://blog.csdn.net/pipisorry/article/details/73294222平面几何余弦定理和勾股定理余弦定理和勾股定理的几何图形解释[震惊!余弦定理和勾股定理竟然有这样的关系]点间距离、点线距离、线间距离两点间的距离已知平面上两点P1(x1,y1), P2(x2,y2)。分别过两点作x轴 和 y轴的垂线,在Rt△P1 QP2中,|P1 P2|2 = |P1 Q|...
阅读(648) 评论(0)

数据散布的度量

http://blog.csdn.net/pipisorry/article/details/72820982考察评估数值数据散布或发散的度量。这些度量包括极差、分位数、四分位数、百分位数和四分位数极差。五数概括可以用盒图显示,它对于识别离群点是有用的。方差和标准差也可以指出数据分布的散布。集中趋势集中趋势(central tendency)在统计学中是指一组数据向某一中心值靠拢的程度,它反映了一...
阅读(793) 评论(0)

矩阵论:向量求导/微分和矩阵微分

http://blog.csdn.net/pipisorry/article/details/68961388复杂的矩阵函数求导。著名的matrix cookbook为广大的研究者们提供了一本大字典,里面有着各种简单到复杂矩阵和向量的求导法则。布局(Layout)矩阵求导有两种布局,分子布局(numerator layout)和分母布局(denominator layout)。为了阐明这两种布局的...
阅读(3188) 评论(0)

数值分析:数据插值方法

http://blog.csdn.net/pipisorry/article/details/62227459插值、拟合和逼近的区别据维基百科,科学和工程问题可以通过诸如采样、实验等方法获得若干离散的数据,根据这些数据,我们往往希望得到一个连续的函数(也就是曲线)或者更加密集的离散方程与已知数据相吻合,这过程就叫做拟合。通过拟合得到的函数获得未知点的数据的方法,叫做插值。其中,拟合函数经过所有已知...
阅读(2184) 评论(0)

信息论:熵与互信息

http://blog.csdn.net/pipisorry/article/details/51695283这篇文章主要讲:熵, 联合熵(joint entropy),条件熵(conditional entropy),相对熵(relative entropy,KL 距离),互信息(mutual information),交叉熵(cross entropy),困惑度(perplexity)。熵/信...
阅读(21769) 评论(0)

图论

http://blog.csdn.net/pipisorry/article/details/52518118最大团给定无向图G=(V,E),其中V是非空集合,称为顶点集;E是V中元素构成的无序二元组的集合,称为边集,无向图中的边均是顶点的无序对,无序对常用圆括号“( )”表示。完全子图complete subgraph如果U∈V,且对任意两个顶点u,v∈U有(u,v)∈E,则称U是G的完全子图。...
阅读(1135) 评论(0)

PGM:概率论基础知识

http://blog.csdn.net/pipisorry/article/details/52459847概率图模型PGM:概率论基础知识独立性与条件独立性独立性条件独立性也就是表示给定 c 的条件下 a 与 b 条件独立,等价于公式p(a | b, c) = p(a | c)随机变量的独立性 等价于 条件独立性的性质这里是前面的独立性可以导出后面的独立性,而不是等价于后面的独立性。条件独立的...
阅读(1240) 评论(0)

数据标准化/归一化normalization

http://blog.csdn.net/pipisorry/article/details/52247379数据的标准化(normalization)和归一化    数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间。在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。其中最典型的就...
阅读(38302) 评论(5)

最优化方法:L1和L2正则化regularization

http://blog.csdn.net/pipisorry/article/details/52108040机器学习和深度学习常用的规则化方法之一:L范数正则化(规格化)。一般来说,监督学习可以看做最小化下面的目标函数):θ∗=arg⁡minθ1N∑i=1NL(yi,f(xi;θ))+λ ...
阅读(6267) 评论(0)

数值分析:矩阵求逆-奇异性、条件数

http://blog.csdn.net/pipisorry/article/details/52241141本blog主要内容有:矩阵的奇异性、条件数与病态矩阵、矩阵求逆。奇异矩阵和非奇异矩阵singular matrix&nonsingular matrix概念和定义若n阶矩阵A的行列式不为零,即 |A|≠0,则称A为非奇异矩阵或满秩矩阵,否则称A为奇异矩阵或降秩矩阵。奇异矩阵是线性代数的概念...
阅读(3792) 评论(0)

最优化方法:拉格朗日乘数法

解决约束优化问题——拉格朗日乘数法拉格朗日乘数法(Lagrange Multiplier Method)应用广泛,可以学习麻省理工学院的在线数学课程。1. 拉格朗日乘数法的基本思想  作为一种优化算法,拉格朗日乘子法主要用于解决约束优化问题,它的基本思想就是通过引入拉格朗日乘子来将含有n个变量和k个约束条件的约束优化问题转化为含有(n+k)个变量的无约束优化问题。拉格朗日乘子背后的数学意义是其为约...
阅读(6495) 评论(0)

最优化方法:深度学习最优化方法

http://blog.csdn.net/pipisorry/article/details/52135832深度学习最优化算法动量Momentum如果把要优化的目标函数看成山谷的话,可以把要优化的参数看成滚下山的石头,参数随机化为一个随机数可以看做在山谷的某个位置以0速度开始往下滚。目标函数的梯度可以看做给石头施加的力,由力学定律知:F=m∗a,所以梯度(施加的力)与石头下滚的加速度成正比。因而...
阅读(3402) 评论(0)

常用三角公式

基本公式两角和与差公式及规律二倍角公式及规律 半角公式三倍角公式积化和差与和差化积公式万能公式皮皮blog诱导公式同角三角函数基本关系皮皮blog应注意的问题1、两角差的余弦公式是本章中其余公式的基础,应记准该公式的形式. 2、倍角公式有升、降幂的功能,如果升幂,则角减半,如果降幂,则角加倍,根据条件灵活选用. 3、公式的“三用”(顺用、逆用、变用)是熟练进行三角变形的前提.3、整体原则-----...
阅读(1159) 评论(0)

微积分:常用公式、微分方程、级数

http://blog.csdn.net/pipisorry/article/details/52200140微积分 一.基本初等函数求导公式函数的和、差、积、商的求导法则反函数求导法则复合函数求导法则皮皮blog二、基本积分表   皮皮blog常用凑微分公式[常用的求导和定积分公式(完美)]分部积分不定积分的分部积分设 及 是两个关于 的函数,各自具有连续导数 及 ,则按照乘积函数求微分法则,则...
阅读(3665) 评论(0)

非负矩阵分解NMF

http://blog.csdn.net/pipisorry/article/details/52098864非负矩阵分解(NMF,Non-negative matrix factorization)NMF的发展及原理  著名的科学杂志《Nature》于1999年刊登了两位科学家D.D.Lee和H.S.Seung对数学中非负矩阵研究的突出成果。该文提出了一种新的矩阵分解思想——非负矩阵分解(Non...
阅读(16209) 评论(8)

参数估计:最大似然估计MLE

http://blog.csdn.net/pipisorry/article/details/51461997最大似然估计MLE顾名思义,当然是要找到一个参数,使得L最大,为什么要使得它最大呢,因为X都发生了,即基于一个参数发生的,那么当然就得使得它发生的概率最大。最大似然估计就是要用似然函数取到最大值时的参数值作为估计值,似然函数可以写做相乘因为它们之间是独立同分布的。由于有连乘运算,通常对似然...
阅读(12401) 评论(0)

概率论:假设检验-t检验、卡方检验和AD-Fuller test

http://blog.csdn.net/pipisorry/article/details/51184556卡方检验 Chi-Squarethe chi-square test measures dependence between stochasticvariables, so using this function “weeds out” the features that are them...
阅读(5647) 评论(0)

概率论:假设检验

http://blog.csdn.net/pipisorry/article/details/51182843 假设检验 假设检验问题分为两类,一类是参数的假设检验,一类是分布的假设检验! 设总体X的分布未知,或 X的某个分布参数 theta未知,对总体分布或分布参数 theta 提出一个假设 "H0" ,然后根据样本所提供的信息,运用统计分析的方法进行判断,从而作出是接受还是拒绝 "H0"...
阅读(2429) 评论(0)
32条 共2页1 2 下一页 尾页
    个人资料
    • 访问:3148946次
    • 积分:28341
    • 等级:
    • 排名:第214名
    • 原创:557篇
    • 转载:30篇
    • 译文:5篇
    • 评论:284条
    Welcome to 皮皮blog~

    博客专栏
    最新评论