原码, 反码, 补码

http://blog.csdn.net/pipisorry/article/details/71157146原码, 反码, 补码的基础概念和计算方法在探求为何机器要使用补码之前, 让我们先了解原码, 反码和补码的概念。对于一个数, 计算机要使用一定的编码方式进行存储。 原码, 反码, 补码是机器存储一个具体数字的编码方式。原码原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值。...
阅读(301) 评论(0)

C++:标准程序库-STL迭代器Iterator

http://blog.csdn.net/pipisorry/article/details/71156760暂时保存一下对templete类型迭代时报错c++vector:iterator it出错error: need ‘typename’ before ‘std::set::iterator’ because ‘std::set’ is a dependent scope也就是在set::i...
阅读(350) 评论(0)

拓扑排序Topological Sorting

http://blog.csdn.net/pipisorry/article/details/71125207拓扑排序Topological Sorting在图论中,拓扑排序(Topological Sorting)是一个有向无环图(DAG, Directed Acyclic Graph)的所有顶点的线性序列。且该序列必须满足下面两个条件:每个顶点出现且只出现一次。若存在一条从顶点 A 到顶点 B...
阅读(434) 评论(0)

“ 鸡尾酒会问题”(cocktail party problem)

Introduction“ 鸡尾酒会问题”(cocktail party problem)是在计算机语音识别领域的一个问题,当前语音识别技术已经可以以较高精度识别一个人所讲的话,但是当说话的人数为两人或者多人时,语音识别率就会极大的降低,这一难题被称为鸡尾酒会问题。解决方案斯坦福大学的Andrew NG教授的机器学习公开课(http://v.163.com/special/opencourse/m...
阅读(657) 评论(0)

矩阵论:向量求导/微分和矩阵微分

http://blog.csdn.net/pipisorry/article/details/68961388复杂的矩阵函数求导。著名的matrix cookbook为广大的研究者们提供了一本大字典,里面有着各种简单到复杂矩阵和向量的求导法则。布局(Layout)矩阵求导有两种布局,分子布局(numerator layout)和分母布局(denominator layout)。为了阐明这两种布局的...
阅读(1900) 评论(0)

时间序列分析

http://blog.csdn.net/pipisorry/article/details/62053938时间序列简介时间序列是时间间隔不变的情况下收集的时间点集合。这些集合被分析用来了解长期发展趋势,为了预测未来或者表现分析的其他形式。但是什么时间序列?与常见的回归问题的不同?1、时间序列是跟时间有关的。所以基于线性回归模型的假设:观察结果是独立的。在这种情况下是不成立的。2、随着上升或者下...
阅读(2281) 评论(3)

Bloom Filter布隆过滤器

http://blog.csdn.net/pipisorry/article/details/64127666Bloom Filter简介    Bloom Filter是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合。布隆过滤器(英语:Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过...
阅读(1674) 评论(2)

Count-Min Sketch 算法

http://blog.csdn.net/pipisorry/article/details/64126199 统计频率算法问题:如果老板让你统计一个实时的数据流中元素出现的频率,并且准备随时回答某个元...
阅读(850) 评论(0)

BitMap算法

http://blog.csdn.net/pipisorry/article/details/62443757BitMapBitMap从字面的意思,很多人认为是位图,其实准确的来说,翻译成基于位的映射。在所有具有性能优化的数据结构中,大家使用最多的就是hash表,是的,在具有定位查找上具有O(1)的常量时间,多么的简洁优美。但是数据量大了,内存就不够了。当然也可以使用类似外排序来解决问题的,由于要...
阅读(803) 评论(0)

python模块:array数组模块

http://blog.csdn.net/pipisorry/article/details/62889137数组模块array简介在Python中,列表是一个动态的指针数组,而array模块所提供的array对象则是保存相同类型的数值的动态数组。list的内存分析参考[python数据类型的内存分析 ]。数组并不是Python中内置的标配数据结构,不...
阅读(662) 评论(0)

数值分析:数据插值方法

http://blog.csdn.net/pipisorry/article/details/62227459插值、拟合和逼近的区别据维基百科,科学和工程问题可以通过诸如采样、实验等方法获得若干离散的数据,根据这些数据,我们往往希望得到一个连续的函数(也就是曲线)或者更加密集的离散方程与已知数据相吻合,这过程就叫做拟合。通过拟合得到的函数获得未知点的数据的方法,叫做插值。其中,拟合函数经过所有已知...
阅读(1494) 评论(0)

数据预处理:独热编码(One-Hot Encoding)

问题由来在很多机器学习任务中,特征并不总是连续值,而有可能是分类值。例如,考虑一下的三个特征:["male", "female"]["from Europe", "from US", "from Asia"]["uses Firefox", "uses Chrome", "uses Safari", "uses Internet Explorer"]如果将上述特征用数字表示,效率会高很多。例如:[...
阅读(4205) 评论(7)

集成方法:渐进梯度回归树GBRT(迭代决策树)

http://blog.csdn.net/pipisorry/article/details/60776803单决策树C4.5由于功能太简单,并且非常容易出现过拟合的现象,于是引申出了许多变种决策树,就是将单决策树进行模型组合,形成多决策树,比较典型的就是迭代决策树GBRT和随机森林RF。在最近几年的paper上,如iccv这种重量级会议,iccv 09年的里面有不少文章都是与Boosting和随...
阅读(2866) 评论(0)

Latex:TexStudio的使用

http://blog.csdn.net/pipisorry/article/details/54565608Texsdudio 快捷键The keyboard shortcuts can be modified at Options -> Shortcuts.The following list is a rough overview of the defaults keyboard short...
阅读(2531) 评论(0)

Latex:入门教程

http://blog.csdn.net/pipisorry/article/details/54571521总的来说,LaTex是一套排版系统,与word那种所见即所得对排版方式不太,用LaTex排版更像是写程序一样,将想要的排版效果用指令写出来,再通过LaTex编译成文档。简单来说,你只要按照要求撰写tex文件,就能够通过LaTex生成排版好的pdf文件。有些人可能听到写程序就头大了,其实使用...
阅读(6919) 评论(0)

Latex:简介及安装

http://blog.csdn.net/pipisorry/article/details/53998352LaTex是一个排版工具,功能强大。它是一个“所想即所得”的工具,你想怎么设定格式,就怎么设定格式。不过,前提是你知道一点latex语法(或者说,latex的命令),并且安装有latex的环境。先要安装latex软件(如下面的tex发行版texlive),之后才能使用latex编辑器Tex...
阅读(1078) 评论(0)

python复杂网络库networkx:绘图draw

http://blog.csdn.net/pipisorry/article/details/54291831networkx使用matplotlib绘制函数draw(G[, pos, ax, hold])Draw the graph G with Matplotlib.draw_networkx(G[, pos, arrows, with_labels])Draw the graph G usi...
阅读(1762) 评论(0)

python复杂网络库networkx:算法

http://blog.csdn.net/pipisorry/article/details/54020333Networks算法Algorithms最短路径Shortest Pathsshortest_pathall_shortest_pathsshortest_path_lengthaverage_shortest_path_lengthhas_pathAdvanced InterfaceDe...
阅读(1739) 评论(0)

R语言:安装及使用

http://blog.csdn.net/pipisorry/article/details/53640638ubuntu下安装sudo apt-get install -y r-base源码安装参考官网[Installing R under Unix-alikes]皮皮blogR参考手册[The R Manuals]from: http://blog.csdn.net/pipisorry/art...
阅读(805) 评论(0)

非参数估计:核密度估计KDE

http://blog.csdn.net/pipisorry/article/details/53635895核密度估计Kernel Density Estimation(KDE)概述密度估计的问题由给定样本集合求解随机变量的分布密度函数问题是概率统计学的基本问题之一。解决这一问题的方法包括参数估计和非参数估计。参数估计参数估计又可分为参数回归分析和参数判别分析。在参数回归分析中,人们假定数据分布...
阅读(7300) 评论(0)
569条 共29页首页 上一页 1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:2593406次
    • 积分:25330
    • 等级:
    • 排名:第248名
    • 原创:534篇
    • 转载:30篇
    • 译文:5篇
    • 评论:245条
    Welcome to 皮皮blog~

    博客专栏
    最新评论