Scala:输入输出

http://blog.csdn.net/pipisorry/article/details/52902694Scala基本输入输出从屏幕上读取用户输入有时候我们需要接收用户在屏幕输入的指令来处理程序。实例如下:object Test { def main(args: Array[String]) { print("请输入 : " ) val line = Conso...
阅读(1618) 评论(0)

Scala:提取器(Extractor)

http://blog.csdn.net/pipisorry/article/details/52902671提取器是从传递给它的对象中提取出构造该对象的参数。Scala 标准库包含了一些预定义的提取器,我们会大致的了解一下它们。Scala 提取器是一个带有unapply方法的对象。unapply方法算是apply方法的反向操作:unapply接受一个对象,然后从对象中提取值,提取的值通常是用来构...
阅读(585) 评论(0)

Scala:类,对象和特征(接口)

http://blog.csdn.net/pipisorry/article/details/52902609Scala类和对象类是对象的抽象,而对象是类的具体实例。类是抽象的,不占用内存,而对象是具体的,占用存储空间。类是用于创建对象的蓝图,它是一个定义包括在特定类型的对象中的方法和变量的软件模板。类的创建和实例化class Point(xc: Int, yc: Int) { var x:...
阅读(1126) 评论(0)

Scala:集合类型Collection和迭代器

http://blog.csdn.net/pipisorry/article/details/52902549Scala CollectionScala 集合分为可变的和不可变的集合。可变集合可以在适当的地方被更新或扩展。这意味着你可以修改,添加,移除一个集合的元素。而不可变集合类,相比之下,永远不会改变。不过,你仍然可以模拟添加,移除或更新操作。但是这些操作将在每一种情况下都返回一个新的集合,同...
阅读(735) 评论(0)

Scala:数组

http://blog.csdn.net/pipisorry/article/details/52902432Scala数组声明数组以下是 Scala 数组声明的语法格式:var z:Array[String] = new Array[String](3) 或var z = new Array[String](3)以上语法中,z 声明一个字符串类型的数组,数组长度为 3 ,可存储 3 个元素。多维...
阅读(746) 评论(0)

Scala:字符串

http://blog.csdn.net/pipisorry/article/details/52902348Scala字符串在 Scala 中,字符串的类型实际上是 Java String,它本身没有 String 类。在 Scala 中,String 是一个不可变的对象,所以该对象不可被修改。这就意味着你如果修改字符串就会产生一个新的字符串对象。但其他对象,如数组就是可变的对象。创建字符串创建...
阅读(1192) 评论(0)

Scala:函数和闭包

http://blog.csdn.net/pipisorry/article/details/52902271Scala函数Scala 有函数和方法,二者在语义上的区别很小。Scala 方法是类的一部分,而函数是一个对象可以赋值给一个变量。换句话来说在类中定义的函数即是方法。我们可以在任何地方定义函数,甚至可以在函数内定义函数(内嵌函数)。更重要的一点是 Scala 函数名可以由以下特殊字符:+,...
阅读(1094) 评论(0)

Scala:访问修饰符、运算符和循环

http://blog.csdn.net/pipisorry/article/details/52902234Scala 访问修饰符Scala 访问修饰符基本和Java的一样,分别有:private,protected,public。如果没有指定访问修饰符符,默认情况下,Scala对象的访问级别都是 public。Scala 中的 private 限定符,比 Java 更严格,在嵌套类情况下,外层...
阅读(695) 评论(0)

Scala:数据类型和变量

http://blog.csdn.net/pipisorry/article/details/52902158Scala数据类型Scala 与 Java有着相同的数据类型,下表列出了 Scala 支持的数据类型:数据类型描述Byte8位有符号补码整数。数值区间为 -128 到 127Short16位有符号补码整数。数值区间为 -32768 到 32767Int32位有符号补码整数。数值区间为 -2...
阅读(1454) 评论(0)

Scala: 简介和安装

http://blog.csdn.net/pipisorry/article/details/52902117Note: lz只是稍微学学,能看懂就行,不深入。适合scala小白。Scala简介Scala 是 Scalable Language 的简写,是一门多范式的编程语言联邦理工学院洛桑(EPFL)的Martin Odersky于2001年基于Funnel的工作开始设计Scala。Funnel...
阅读(378) 评论(0)

python数据挖掘orange

http://blog.csdn.net/pipisorry/article/details/52845804orange的安装linux下的安装先安装依赖pyqt4[PyQt教程 - pythonQt的安装和配置及版本间差异]检查是否安装成功import Orange运行GUI界面python3 -m Orange.canvas安装出错build/temp.linux-x86_64-3.5/_o...
阅读(1900) 评论(0)

最大熵模型求解:训练和学习

http://blog.csdn.net/pipisorry/article/details/52791036最大熵模型的训练和学习最大熵模型求解的思路和步骤最大熵模型学习的具体推导Note: 通过交换极大极小位置,即得其对偶问题。求解内部极小化问题:lagrange乘子法右边更详细的解释 从式6.22中可以看出,通过式6.22可以进行最大熵分类(x为文本d, y为类别c),只需要求解出wi参数(...
阅读(1443) 评论(0)

最大熵模型The Maximum Entropy

http://blog.csdn.net/pipisorry/article/details/52789149最大熵模型相关的基础知识[概率论:基本概念CDF、PDF ][信息论:熵与互信息 ][最优化方法:拉格朗日乘数法 ][参数估计:贝叶斯思想和贝叶斯参数估计...
阅读(1607) 评论(9)

对数线性模型

http://blog.csdn.net/pipisorry/article/details/52788947特征和指示特征对数线性模型log linear model对数线性模型有:最大熵模型和逻辑斯谛回归。[概率图模型原理与技术][PGM:无向图模型:马尔可夫网 ]皮皮blog最大熵模型的一般形式[统计学习方法]from: http://blog.csdn...
阅读(877) 评论(0)

“ 鸡尾酒会问题”(cocktail party problem)

Introduction“ 鸡尾酒会问题”(cocktail party problem)是在计算机语音识别领域的一个问题,当前语音识别技术已经可以以较高精度识别一个人所讲的话,但是当说话的人数为两人或者多人时,语音识别率就会极大的降低,这一难题被称为鸡尾酒会问题。解决方案斯坦福大学的Andrew NG教授的机器学习公开课(http://v.163.com/special/opencourse/m...
阅读(552) 评论(0)

PGM:不完备数据的参数估计

http://blog.csdn.net/pipisorry/article/details/52626889使用不完备数据的贝叶斯学习:MLE估计(梯度上升和EM算法)、贝叶斯估计。参数估计与处理完备数据的类似,有两种估计方法:最大似然估计MLE和贝叶斯估计。使用不完备数据的最大似然估计MLE梯度上升方法{优化似然函数算法1}计算梯度先考虑相对于一个单一CPD的表值P(x|u)的导数(一个数据的...
阅读(1095) 评论(0)

PGM:部分观测数据

http://blog.csdn.net/pipisorry/article/details/52599451基础知识数据缺失的三种情形:数据的似然和观测模型Note: MLE中是将联合概率P(x,y)赋值给实例。缺失数据的处理:不仅考虑数据产生机制,还要考虑数据被隐藏的机制随机缺失值:主要是修改投掷结果X(随机变量)吧?蓄意缺失值:主要是修改观测变量O吧?随机变量X、观测变量O和实际观测YNot...
阅读(1591) 评论(0)

PGM:贝叶斯网的参数估计2

http://blog.csdn.net/pipisorry/article/details/52599321没时间看了,下次再看。。。具有共享参数的学习模型全局参数共享局部参数共享具有 共享参数的贝叶斯推断层次先验*皮皮blog专栏17.E 文本分类的词袋模型伯努利朴素贝叶斯模型和多项式朴素贝叶斯模型隐含狄利克雷分布LDA皮皮blog泛化分析*渐近性分析PAC界皮皮blogfrom: http:...
阅读(1260) 评论(0)

PGM:贝叶斯网的参数估计

http://blog.csdn.net/pipisorry/article/details/52578631本文讨论贝叶斯网的参数估计问题:贝叶斯网的MLE最大似然估计和贝叶斯估计。假定网络结构是固定的,且假定数据集D包含了网络变量的完全观测实例。参数估计的主要方法有两种:一种基于最大的似然的估计;一种是使用贝叶斯方法。贝叶斯网的MLE参数估计最大似然估计MLE[参数估计:最大似然估计MLE...
阅读(1975) 评论(3)

机器学习模型的评价指标和方法

http://blog.csdn.net/pipisorry/article/details/52574156衡量分类器的好坏对于分类器,或者说分类算法,评价指标主要有precision,recall,宏平均和微平均,F-score,pr曲线,ROC-AUC曲线,gini系数。分类模型的评估 机器学习系统设计系统评估标准Error Metrics for Skewed...
阅读(5808) 评论(0)
569条 共29页首页 上一页 1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:2595742次
    • 积分:25335
    • 等级:
    • 排名:第248名
    • 原创:534篇
    • 转载:30篇
    • 译文:5篇
    • 评论:245条
    Welcome to 皮皮blog~

    博客专栏
    最新评论