图论

http://blog.csdn.net/pipisorry/article/details/52518118最大团给定无向图G=(V,E),其中V是非空集合,称为顶点集;E是V中元素构成的无序二元组的集合,称为边集,无向图中的边均是顶点的无序对,无序对常用圆括号“( )”表示。完全子图complete subgraph如果U∈V,且对任意两个顶点u,v∈U有(u,v)∈E,则称U是G的完全子图。...
阅读(907) 评论(0)

PGM:无向图模型:马尔可夫网

http://blog.csdn.net/pipisorry/article/details/52489321马尔可夫网皮皮blog无向图模型误解示例P-map不能构建贝叶斯网的一个示例x1表示这个学生对概念存在误解,x0表示没有。Note: 其中的bd其实只要给定c就是相互依赖了。[PGM:贝叶斯网络 ]误解示例的无向图模型解决...
阅读(3140) 评论(1)

PGM:有向图模型:贝叶斯网络

http://blog.csdn.net/pipisorry/article/details/52489270为什么用贝叶斯网络联合分布的显式表示Note: n个变量的联合分布,每个x对应两个值,共n个x,且所有概率总和为1,则联合分布需要2^n-1个参数。贝叶斯网表示独立性质的应用会降低参数数目,表达更紧凑。[PGM:贝叶斯网表示之朴素贝叶斯模型naive Bayes...
阅读(4341) 评论(0)

文件自动备份和同步bypy和syncthing

http://blog.csdn.net/pipisorry/article/details/52464402Linux定时备份数据到百度云盘 sudo pip3 install requestssudo pip3 install bypy备份脚本示例#!/bin/sh# File:    ~/bysync.sh# Author...
阅读(1693) 评论(0)

PGM:贝叶斯网表示之朴素贝叶斯模型naive Bayes

http://blog.csdn.net/pipisorry/article/details/52469064独立性质的利用条件参数化和条件独立性假设被结合在一起,目的是对高维概率分布产生非常紧凑的表示。随机变量的独立性[PGM:概率论基础知识 :独立性性质的利用]条件参数化方法Note: P(I), P(S | i0), P(S | i1)都是二项式分布,都...
阅读(2483) 评论(2)

PGM:概率论基础知识

http://blog.csdn.net/pipisorry/article/details/52459847概率图模型PGM:概率论基础知识独立性与条件独立性独立性条件独立性也就是表示给定 c 的条件下 a 与 b 条件独立,等价于公式p(a | b, c) = p(a | c)随机变量的独立性 等价于 条件独立性的性质这里是前面的独立性可以导出后面的独立性,而不是等价于后面的独立性。条件独立的...
阅读(891) 评论(0)

操作系统服务:其它模块

http://blog.csdn.net/pipisorry/article/details/52454579IO模块16.2. io — Core tools for working with streams16.2.1. Overview16.2.1.1. Text I/O16.2.1.2. Binary I/O16.2.1.3. Raw I/O16.2.2. High-level Modul...
阅读(484) 评论(0)

操作系统服务:OS模块

http://blog.csdn.net/pipisorry/article/details/52454486一般的操作系统服务之OS模块Generic Operating System Servicesos模块模块包含普遍的操作系统功能。利用这个模块可以写出与平台无关的程序,比如就是使用os.sep可以取代操作系统特定的路径分割符。os模块包含    Tasks    Tools    Shel...
阅读(542) 评论(0)

Spark运行架构

http://blog.csdn.net/pipisorry/article/details/523662881、 Spark运行架构1.1 术语定义lApplication:Spark Application的概念和Hadoop MapReduce中的类似,指的是用户编写的Spark应用程序,包含了一个Driver 功能的代码和分布在集群中多个节点上运行的Executor代码;lDriver:S...
阅读(1331) 评论(0)

Pycharm中进行Python远程开发

http://blog.csdn.net/pipisorry/article/details/52269952PyCharm提供两种远程调试(Remote Debugging)的方式:    配置远程的解释器(remote interpreter)    配置Python调试服务器(Python Debug Server)[配置Python调试服务器]本文主要说明远程的解释器(remote int...
阅读(9643) 评论(0)

Scikit-learn:模型选择之调参grid search

http://blog.csdn.net/pipisorry/article/details/52268947Scikit-learn:并行调参Grid SearchGrid Search: Searching for estimator parametersscikit-learn中提供了pipeline(for estimator connection) & grid_search(searc...
阅读(848) 评论(0)

ssh用法及命令

http://blog.csdn.net/pipisorry/article/details/52269785什么是SSH?简单说,SSH是一种网络协议,用于计算机之间的加密登录。如果一个用户从本地计算机,使用SSH协议登录另一台远程计算机,我们就可以认为,这种登录是安全的,即使被中途截获,密码也不会泄露。最早的时候,互联网通信都是明文通信,一旦被截获,内容就暴露无疑。1995年,芬兰学者Tatu...
阅读(14797) 评论(1)

Scikit-learn:scikit-learn快速教程及实例

http://blog.csdn.net/pipisorry/article/details/52251305scikit-learn 教程导航简介:使用scikit-learn进行机器学习 机器学习:问题设定加载样例数据集学习和预测模型持久化惯例 统计学习教程 统计学习:scikit-learn中的配置和estimator对象有监督学习:预测高维观测对象模型选择:选择estimator和参数无...
阅读(6232) 评论(0)

Scikit-learn:模型评估Model evaluation

http://blog.csdn.net/pipisorry/article/details/52250760模型评估Model evaluation: quantifying the quality of predictions3 different approaches to evaluate the quality of predictions of a model:Estimator sc...
阅读(3437) 评论(0)

Scikit-learn:模型选择Model selection之pipline和交叉验证

http://blog.csdn.net/pipisorry/article/details/52250983选择合适的estimator 通常机器学习最难的一部分是选择合适的estimator,不同的estimator适用于不同的数据集和问题。 sklearn官方文档提供了一个图[flowchart],可以快速地根据你的数据和问题选择合适的estimator,单击相应的区域还可以获得更具体的内...
阅读(4198) 评论(0)

Scikit-learn:数据预处理Preprocessing data

http://blog.csdn.net/pipisorry/article/details/52247679本blog内容有标准化、数据最大最小缩放处理、正则化、特征二值化和数据缺失值处理。基础知识参考[数据标准化/归一化normalization ][均值、方差与协方差矩阵 ][矩阵论:向量范数和矩阵范数...
阅读(2653) 评论(0)

Scikit-learn:主要模块和基本使用方法

http://blog.csdn.net/pipisorry/article/details/52128222scikit-learn: Machine Learning in Python.scikit-learn库实现了很多机器学习算法。scikit-learn是一个基于NumPy, SciPy, Matplotlib的开源机器学习工具包,主要涵盖分类,回归和聚类算法,例如SVM, 逻辑回归,...
阅读(2176) 评论(0)

数据标准化/归一化normalization

http://blog.csdn.net/pipisorry/article/details/52247379数据的标准化(normalization)和归一化    数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间。在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。其中最典型的就...
阅读(16766) 评论(2)

未名

给blog留个空...
阅读(726) 评论(0)

最优化方法:范数和规则化regularization

http://blog.csdn.net/pipisorry/article/details/52108040范数规则化 机器学习中出现的非常频繁的问题有:过拟合与规则化。先简单的来理解下常用的L0、L1、L2和核范数规则化,最后聊下规则化项参数的选择问题。 如何看待规则化项和过拟合从不同角度来看待规则化       1 监督机器学习问题无非就是“minimize your error while...
阅读(4021) 评论(0)
565条 共29页首页 上一页 1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:2208487次
    • 积分:23262
    • 等级:
    • 排名:第285名
    • 原创:530篇
    • 转载:30篇
    • 译文:5篇
    • 评论:233条
    Welcome to 皮皮blog~

    博客专栏
    最新评论