Conjugate prior-共轭先验的解释

共轭先验在贝叶斯统计中扮演重要角色,它确保后验分布与先验分布具有相同函数形式,简化了分析过程。通过贝叶斯公式,先验分布和似然函数的特定组合能保持分布形式的一致,形成先验分布链。常见先验及其共轭分布包括多种概率模型。

一 问题来源:

看PRML第二章时遇到的。

二 问题描述:

PRML第68页说:“We shall see that an import role is played by conjugate priors, that lead to posterior distributions having the same functional form as the prior , and that therefore lead to a greatly simplified Bayesian analysis.”

三 解释:我们看到,共轭先验在贝叶斯推理中具有重要意义,它使得后验分布和先验具有相同的函数形式。现在假设我们有这样几类概率:

p(θ)(先验分布),

p(θ|X)(后验分布),

p(X), 

p(X|θ) (似然函数).

它们之间的关系可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值