PGM学习之四 Factor,Reasoning

本文深入探讨Factor在概率图模型(PGM)中的推理模式,包括Causal Reasoning(因果推理)、Evidential Reasoning(证据推理)和Intercausal Reasoning(混合推理)。介绍了因果推理的必要条件、不同类型的因果模型,以及Deduction、Induction和Abduction三种推理方式。证据推理基于Dempster-Shafer理论,处理不确定性信息。混合推理结合因果与证据推理,用于更复杂的场景分析。
摘要由CSDN通过智能技术生成

通过上一篇文章的介绍,我们已经基本了解了:Factor是组成PGM模型的基本要素;Factor之间的运算和推理是构建高维复杂PGM模型的基础。那么接下来,我们将重点理解,Factor之间的推理(Reasoning Patterns)。Factor之间的推理分为以下几类:

1. Causal Reasoning , 因果推理;

2. Evidential Reasoning,证据推理;

3. Intercausal Reasoning

本文将详细描述上述三种推理模式。

一 Casual Reasoning,因果推理

要弄清楚因果推理,我们首先要明白什么是因果关系(Causality)。当我们说A与B之间具有因果关系,如果A是因(cause)B是果(effect),则A与B之间必须具备以下四个必要条件(necessary conditions):

A与B共变(covary),也就是A增加(或减少)B也增加(或是减少)

A发生在B之前,也就是“前因”“后果”

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值