题意:给定一棵树,每个节点是一堆石子,给定两种操作:
1.改变x号节点的石子数量
2.用从x到y的路径上的所有堆石子玩一次Nim游戏,询问是否有必胜策略
Nim游戏有必胜策略的充要条件是所有堆的石子数异或起来不为零
这题首先一看就是树链剖分 然后题目很善良地告诉我们深搜会爆栈 于是我们可以选择广搜版的树链剖分
BFS序从左到右是深搜,从右到左是回溯,一遍BFS就够
单点修改区间查询还可以套用ZKW线段树
不过这题其实不用这么麻烦 有更简单的办法 详见 http://dzy493941464.is-programmer.com/posts/40428.html
由于要手写系统栈所以懒得写0.0 又想起省选时30W爆栈第一次手写系统栈的时候了0.0 居然还过了0.0
就贴个树链剖分版的吧 怎么最近代码越写越慢0.0
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define M 500100
using namespace std;
struct abcd{
int to,next;
}table[M<<1];
int head[M],tot;
void add(int x,int y)
{
table[++tot].to=y;
table[tot].next=head[x];
head[x]=tot;
}
int n,m,q,tree[1049000],f[M],pos[M],dpt[M],siz[M],son[M],top[M],fa[M],cnt,queue[M],r,h;
void bfs()
{
int i,j,x;
queue[++r]=1;
while(r!=h)
{
x=queue[++h];
dpt[x]=dpt[fa[x]]+1;
siz[x]=1;
for(i=head[x];i;i=table[i].next)
{
if(table[i].to==fa[x])
continue;
fa[table[i].to]=x;
queue[++r]=table[i].to;
}
}
for(i=n;i;i--)
{
x=queue[i];
siz[fa[x]]+=siz[x];
if(siz[x]>siz[son[fa[x]]])
son[fa[x]]=x;
}
for(i=1;i<=n;i++)
{
x=queue[i];
if(son[fa[x]]==x)
top[x]=top[fa[x]];
else
{
top[x]=x;
for(j=x;j;j=son[j])
pos[j]=++cnt;
}
}
}
void Build_tree()
{
for(int i=q-1;i;i--)
tree[i]=tree[i<<1]^tree[i<<1|1];
}
void change(int x,int y)
{
for(tree[x+=q]=y,x>>=1;x;x>>=1)
tree[x]=tree[x<<1]^tree[x<<1|1];
}
int getans(int x,int y)
{
int re=0;
for(x+=q-1,y+=q+1;x^y^1;x>>=1,y>>=1)
{
if(~x&1)re^=tree[x^1];
if( y&1)re^=tree[y^1];
}
return re;
}
int query(int x,int y)
{
int re=0,fx=top[x],fy=top[y];
while(fx!=fy)
{
if(dpt[fx]<dpt[fy])
swap(x,y),swap(fx,fy);
re^=getans(pos[fx],pos[x]);
x=fa[fx];fx=top[x];
}
if(dpt[x]<dpt[y])
swap(x,y);
re^=getans(pos[y],pos[x]);
return re;
}
int main()
{
int i,x,y;
char p[10];
cin>>n;
for(q=1;q<=n+1;q<<=1);
for(i=1;i<=n;i++)
scanf("%d",&f[i]);
for(i=1;i<n;i++)
{
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
bfs();
for(i=1;i<=n;i++)
tree[pos[i]+q]=f[i];
Build_tree();
cin>>m;
for(i=1;i<=m;i++)
{
scanf("%s%d%d",p,&x,&y);
if(p[0]=='C')
change(pos[x],y);
else
printf("%s\n",query(x,y)==0?"No":"Yes");
}
}