BZOJ 3727 PA2014 Final Zadanie 树形DP

25 篇文章 1 订阅

题目大意:给定一棵树,令一个点到所有点的距离与点权的乘积之和为b[i],求每个点的权值a[i]

首先如果给定a[i]我们可以很轻松的求出b[i] 但是反过来怎么搞?高斯消元?30W?

考虑已知a[i]求b[i]的情况 令这棵树的根为1 点i到根节点的距离为dis[i] 以i为根的子树的a值之和为size[i] 那么有递推式

b[1]=Σa[i]*dis[i]
b[x]=b[fa[x]]-2*size[x]+size[1]

将上式变形得:

2*size[x]=b[fa[x]]-b[x]+size[1]

且显然有

a[x]=size[x]-Σa[son[x]]

我们可以O(n)求出所有a[x]关于size[1]的一次函数关系 然后代入b[1]=Σa[i]*dis[i] 可以得到b[1]关于size[1]的一次函数关系 由于b[1]已知 所以size[1]就搞出来了

然后代入求出a[2]~a[n] 然后用size[1]减掉所有的a[2]~a[n]就是a[1]

别忘了开long long

多解啥的 看到没有Special Judge就知道 那是逗你的……

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define M 300300
using namespace std;
typedef long long ll;
typedef pair<ll,ll> abcd;
struct edge{
	int to,next;
}table[M<<1];
int head[M],tot;
int n,ans,fa[M],dis[M];
ll a[M],b[M];
abcd double_size[M],double_a[M],b_1;
void Add(int x,int y)
{
	table[++tot].to=y;
	table[tot].next=head[x];
	head[x]=tot;
}
abcd operator += (abcd &x,const abcd &y)
{
	x.first+=y.first;
	x.second+=y.second;
}
void operator -= (abcd &x,const abcd &y)
{
	x.first-=y.first;
	x.second-=y.second;
}
abcd operator * (const abcd &x,int y)
{
	return abcd( x.first * y , x.second * y );
}
void BFS()
{
	static int q[M],r,h;
	int i;
	q[++r]=1;
	while(r!=h)
	{
		int x=q[++h];
		for(i=head[x];i;i=table[i].next)
			if(table[i].to!=fa[x])
			{
				fa[table[i].to]=x;
				dis[table[i].to]=dis[x]+1;
				q[++r]=table[i].to;
			}
	}
}
int main()
{
	int i,x,y;
	cin>>n;
	for(i=1;i<n;i++)
		scanf("%d%d",&x,&y),Add(x,y),Add(y,x);
	for(i=1;i<=n;i++)
		scanf("%d",&b[i]);
	BFS();
	for(i=2;i<=n;i++)
		double_size[i]=abcd(1,b[fa[i]]-b[i]);
	for(x=2;x<=n;x++)
	{
		double_a[x]=double_size[x];
		for(i=head[x];i;i=table[i].next)
			if(table[i].to!=fa[x])
				double_a[x]-=double_size[table[i].to];
		b_1+=double_a[x]*dis[x];
	}
	ans=(b[1]+b[1]-b_1.second)/b_1.first;
	a[1]=ans;
	for(i=2;i<=n;i++)
	{
		a[i]=double_a[i].first*ans+double_a[i].second>>1;
		a[1]-=a[i];
	}
	for(i=1;i<=n;i++)
		printf("%lld%c",a[i],i==n?'\n':' ');
}
+


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值